Houze, R.A.J. Cloud Dynamics. Academic Press 1994, p. 573.
487 2. Knight, D.; Davis, R. Contribution of tropical cyclones to extreme rainfall in the Southeastern United States.
488 Journal of Geophysical Research 2009, 114. doi:10.1029/2009JD012511.
489 3. Pillay, M.; Fitchett, J. Southern Hemisphere Tropical Cyclones: A Critical Analysis of Regional
490 Characteristics. International Journal of Climatology 2020, 41. doi:10.1002/joc.6613.
491 4. Mendelsohn, R.; Molua, E.; Akamin, A. Economic vulnerability to tropical storms on the southeastern
492 coast of Africa. Jàmbá Journal of Disaster Risk Studies 2020, 12, 2072–845. doi:10.4102/jamba.v12i1.676.
493 5. Chikoore, H.; Vermeulen, J.; Jury, M. Tropical cyclones in the Mozambique Channel: January–March 2012.
494 Natural Hazards 2015, 77. doi:10.1007/s11069-015-1691-0.
495 6. Davis-Reddy, C.; Vincent, K.; CSIR, 2017.
496 7. Mavume, A.; Rydberg, L.; Rouault, M.; Lutjeharms, J. Climatology and Landfall of Tropical
497 Cyclones in the South- West Indian Ocean. Western Indian Ocean Journal of Marine Science 2010, 8.
498 doi:10.4314/wiojms.v8i1.56672.
499 8. Reason, C.J.C.; Keibel, A. Tropical Cyclone Eline and Its Unusual Penetration and Impacts
500 over the Southern African Mainland. Weather and Forecasting 01 Oct. 2004, 19, 789 – 805.
501 doi:10.1175/1520-0434(2004)019<0789:TCEAIU>2.0.CO;2.
502 9. Moses, O.; Ramotonto, S. Assessing forecasting models on prediction of the tropical cyclone
503 Dineo and the associated rainfall over Botswana. Weather and Climate Extremes 2018, 21, 102–109.
504 doi:https://doi.org/10.1016/j.wace.2018.07.004.
505 10. Mhlanga, C.; Muzingili, T.; Mpambela, M. Natural disasters in Zimbabwe: the primer for social work
506 intervention. African Journal of Social Work 2019, 9, 46–54.
507 11. Reunion, M.F.L. Past and Current hurricane system 2021.
508 12. Malherbe, J.; Engelbrecht, F.; Landman, W. Projected changes in tropical cyclone climatology and landfall
509 in the Southwest Indian Ocean region under enhanced anthropogenic forcing. Climate Dynamics 2013, 40.
510 doi:10.1007/s00382-012-1635-2.
511 13. Yu, P.; Johannessen, J.A.; Yan, X.H.; Geng, X.; Zhong, X.; Zhu, L. A Study of the Intensity of Tropical
512 Cyclone Idai Using Dual-Polarization Sentinel-1 Data. Remote Sensing 2019, 11. doi:10.3390/rs11232837.
513 14. Organization,W.M. Reducing vulnerability to extreme hydro-meteorological hazards in Mozambique after
514 Cyclone IDAI:WMO mission report following tropical cyclone IDAI. WMO 2019, p. 64.
515 15. Mongo, E.; Cambaza, E.; Nhambire, R.; Singo, J.; Machava, E., Outbreak of Cholera Due to Cyclone Idai in
516 Central Mozambique (2019); 2020; pp. 1–8. doi:10.5772/intechopen.89358.
517 16. Zimba, S.K.; Houane, M.J.; Chikova, A.M. Impact of Tropical Cyclone Idai on the Southern African Electric
518 Power Grid. 2020 IEEE PES/IAS PowerAfrica, 2020, pp. 1–5. doi:10.1109/PowerAfrica49420.2020.9219944.
519 17. Charrua, A.B.; Padmanaban, R.; Cabral, P.; Bandeira, S.; Romeiras, M.M. Impacts of the Tropical Cyclone
520 Idai in Mozambique: A Multi-Temporal Landsat Satellite Imagery Analysis. Remote Sensing 2021, 13.
521 doi:10.3390/rs13020201.
522 18. Frieden, M. The aftermath of Cyclone Idai—building bridges where we can, 2019. Marthe Frieden is the
523 medical team leader in MSF’s emergency response to the destruction caused by tropical Cyclone Idai. On
524 the night of 15 March, the cyclone hit Zimbabwe’s mountainous Manicaland province, causing flooding
525 and deadly landslides, particularly in the Chimanimani District. Before Idai hit, Marthe was working on an
526 MSF pilot project for managing diabetes and hypertension in the nearby Chipinge District, in partnership
527 with Zimbabwe’s health ministry. Writing from the worst hit districts of Chimanimani and Chipinge,
528 Marthe describes the events of the first six days as an MSF team of 10 people rapidly switched from their
529 regular activities to emergency mode.
530 19. Chari, F.; Ngcamu, B.; Novukela, C. Supply chain risks in humanitarian relief operations: a case of
531 Cyclone Idai relief efforts in Zimbabwe. Journal of Humanitarian Logistics and Supply Chain Management
532 2020, 10, 320–361. doi:10.1108/JHLSCM-12-2019-0080.
533 20. Suarez, P. Linking Climate Knowledge and Decisions: Humanitarian Challenges 2009.
534 21. Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015,
535 525, 47–55. doi:10.1038/nature14956.
Version June 27, 2021 submitted to Atmosphere 22 of 24
22. Dyson, 536 L.; Van Heerden, J. The heavy rainfall and floods over the northeastern interior of South Africa
537 during February 2000. South African Journal of Science 2001, 97, 80–86.
538 23. Stensrud, D. Parametrization schemes. Keys to understanding numerical weather prediction models.
539 Reprint of the 2007 hardback ed. Parameterization Schemes: Keys to Understanding Numerical Weather
540 Prediction Models 2007, p. 480. doi:10.1017/CBO9780511812590.
541 24. Villafuerte II, M.; Lambrento, J.; Hodges, K.; Cruz, F.; Cinco, T.; Narisma, G. Sensitivity of tropical
542 cyclones to convective parameterization schemes in RegCM4. Climate Dynamics 2021, 56, 1–18.
543 doi:10.1007/s00382-020-05553-3.
544 25. Fuentes Franco, R.; Giorgi, F.; Coppola, E.; Zimmermann, K. Sensitivity of tropical cyclones to resolution,
545 convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North
546 Atlantic Oceans in the RegCM4 model. Climate Dynamics 2017, 49. doi:10.1007/s00382-016-3357-3.
547 26. Lim, Y.K.; Schubert, S.D.; Reale, O.; Lee, M.I.; Molod, A.M.; Suarez, M.J. Sensitivity of Tropical Cyclones
548 to Parameterized Convection in the NASA GEOS-5 Model. Journal of Climate 15 Jan. 2015, 28, 551 – 573.
549 doi:10.1175/JCLI-D-14-00104.1.
550 27. Radhakrishnan, C.; Balaji, C. Sensitivity of tropical cyclone Jal simulations to physics parameterizations.
551 Journal of Earth System Science 2012, 121. doi:10.1007/s12040-012-0212-8.
552 28. Davis, C. Resolving Tropical Cyclone Intensity in Models. Geophysical Research Letters 2018, 45.
553 doi:10.1002/2017GL076966.
554 29. Steeneveld, G.J.; Peerlings, E. Mesoscale Model Simulation of a Severe Summer Thunderstorm in The
555 Netherlands: Performance and Uncertainty Assessment for Parameterised and Resolved Convection.
556 Atmosphere 2020, 11. doi:10.3390/atmos11080811.
557 30. Honnert, R.; Efstathiou, G.A.; Beare, R.J.; Ito, J.; Lock, A.; Neggers, R.; Plant, R.S.;
558 Shin, H.H.; Tomassini, L.; Zhou, B. The Atmospheric Boundary Layer and the âoeGray
559 Zoneâ of Turbulence: A Critical Review. Journal of Geophysical Research: Atmospheres
560 2020, 125, e2019JD030317, [https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JD030317].
561 e2019JD030317 10.1029/2019JD030317, doi:https://doi.org/10.1029/2019JD030317.
562 31. Zheng, Y.; Alpaty, K.; Herwehe, J.A.; Del Genio, A.D.; Niyogi, D. Improving high-resolution weather
563 forecasts using the Weather Research and Forecasting (WRF) model with an updated Kain-Fritsch scheme.
564 Mon. Weather Rev. 2016, 144, 833–860. doi:10.1175/MWR-D-15-0005.1.
565 32. Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and
566 air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250.
567 33. Somses, S.; Bopape, M.J.M.; Ndarana, T.; Fridlind, A.; Matsui, T.; Phaduli, E.; Limbo, A.; Maikhudumu, S.;
568 Maisha, R.; Rakate, E. Convection parametrization and multi-nesting dependence of a heavy rainfall event
569 over Namibia with Weather Research and Forecasting (WRF) model. Climate 2020.
570 34. Champion, A.; Hodges, K. Importance of resolution and model configuration when downscaling extreme
571 precipitation. Tellus A 2014, 66. doi:10.3402/tellusa.v66.23993.
572 35. Skamarock,W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Huang, X.y. A Description of the
573 Advanced ResearchWRFModel Version 4 (No. NCAR/TN-556+STR). A description of the Advanced Research
574 WRF version 4 2008.
575 36. Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.;
576 Ahmadov, R.; Peckham, S.E.; Grell, G.A.;Michalakes, J.; Trahan, S.; Benjamin, S.G.; Alexander, C.R.; Dimego,
577 G.J.; Wang, W.; Schwartz, C.S.; Romine, G.S.; Liu, Z.; Snyder, C.; Chen, F.; Barlage, M.J.; Yu, W.; Duda, M.G.
578 The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bulletin of
579 the American Meteorological Society 01 Aug. 2017, 98, 1717 – 1737. doi:10.1175/BAMS-D-15-00308.1.
580 37. Bopape, M.M.; Sithole, H.; Motshegwa, T.; Rakate, E.; Engelbrecht, F.; Morgan, A.; Ndimeni, L.; Botai, O.J.
581 A Regional Project in Support of the SADC Cyber-Infrastructure Framework Implementation: Weather
582 and Climate. Data Sci. J. 2019, 18, 34. doi:10.5334/dsj-2019-034.
583 38. Clark, P.; Roberts, N.; Lean, H.; Ballard, S.; Charlton-Perez, C. Convection-permitting models: A
584 step-change in rainfall forecasting. Meteorol Appl 2016, 23. doi:10.1002/met.1538.
585 39. Weisman, M.; Skamarock, W.; Klemp, J. The Resolution Dependence of Explicitly Modeled Convective
586 Systems. Mon Weather Rev 1997, 125. doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.
587 40. Roberts, N. Assessing the spatial and temporal variation in the skill of precipitation forecasts from an
588 NWP model. Meteorol Appl 2008a, 15, 163 – 169. doi:10.1002/met.57.
Version June 27, 2021 submitted to Atmosphere 23 of 24
589 41. Bryan, G.; Wyngaard, J.; Fritsch, J. Resolution Requirements for the Simulation of Deep Moist Convection.
590 Mon. Weather Rev. 2003, 131. doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.
591 42. J., S. Implementation of the sigma pressure hybrid coordinate into GFS. NCEP office Note 2009, 461, 1 – 25.
592 43. W.,W. WRF: More Runtime Options. WRF Tutorial, UNSW, Sydney, Australia 2017, p. 46.
593 44. Sun, B.Y.; Bi, X. Validation for a tropical belt version of WRF: sensitivity tests on radiation and
594 cumulus convection parameterizations. Atmospheric and Oceanic Science Letters 2019, pp. 1–9.
595 doi:10.1080/16742834.2019.1590118.
596 45. Iacono, M.; Delamere, J.; Mlawer, E.; Shepard, M.; Clough, S.; Collins, W. Radiative Forcing by
597 Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys Res, 113.
598 doi:10.1029/2008JD009944.
599 46. Hong, S.Y.; Kim, J.H.; Lim, J.o.; Dudhia, J. The WRF single moment microphysics scheme (WSM). Journal
600 of the Korean Meteorological Society 2006, 42, 129–151.
601 47. Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit
602 Treatment of Entrainment Processes. Monthly Weather Review 2006, 134, 2318–2341,
603 [https://journals.ametsoc.org/mwr/article-pdf/134/9/2318/4228453/mwr3199_1.pdf].
604 doi:10.1175/MWR3199.1.
605 48. Zhang, C.; Wang, Y.; Hamilton, K. Improved Representation of Boundary Layer Clouds over the Southeast
606 Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Mon Weather Rev 2011,
607 139, 3489–3513. doi:10.1175/MWR-D-10-05091.1.
608 49. Zhang, S.; Matsui, T.; Cheung, S.; Zupanski, M.; Peters-Lidard, C. Impact of Assimilated
609 Precipitation-Sensitive Radiances on the NU-WRF Simulation of the West African Monsoon. Mon Weather
610 Rev 2017, 145. doi:10.1175/MWR-D-16-0389.1.
611 50. MA, T. A Comprehensive Mass Flux Scheme For Cumulus Parameterization In Large-Scale Models. Mon
612 Weather Rev 1989, 117. doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.
613 51. Han, J.; Pan, H.L. Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast
614 System. Weather and Forecasting 01 Aug. 2011, 26, 520 – 533. doi:10.1175/WAF-D-10-05038.1.
615 52. Pan, H.L.; Wu, W.S. Implementing a mass flux convective parameterization package for the NMC
616 Medium-Range Forecast model. NMC Office Note 409, 40pp 1995.
617 53. Kain, J.S.; Fritsch, J.M. A one-dimensional entraining/detraining plume model and its application in
618 convective parameterization., 1990.
619 54. Kain, J.S. The Kainâ“Fritsch convective parameterization: An update., 2004.
620 55. Arakawa, A.; Jung, J.H.; Wu, C.M. Toward unification of the multiscale modeling of the atmosphere.
621 Atmospheric Chemistry and Physics 2011, 11, 3731–3742. doi:10.5194/acp-11-3731-2011.
622 56. Janjic´, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous
623 Sublayer, and Turbulence Closure Schemes. Monthly Weather Review 01 May. 1994, 122, 927 – 945.
624 doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
625 57. Janjic´, Z.I. Comments on “Development and Evaluation of a Convection Scheme for Use
626 in Climate Models”. Journal of the Atmospheric Sciences 01 Nov. 2000, 57, 3686 – 3686.
627 doi:10.1175/1520-0469(2000)057<3686:CODAEO>2.0.CO;2.
628 58. Betts, A.K. A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy.
629 Meteor. Soc. 1986, 112, 677–691. doi:10.1256/smsqj.47306.
630 59. Betts, A.K.; Miller, M.J. A new convective adjustment scheme. Part II: Single column tests using GATE
631 wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc. 1986, 112, 693–709.
632 doi:10.1002/qj.49711247308.
633 60. Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; P., X. Integrated Multi-satellitE Retrievals for
634 GPM (IMERG), version 4.4. NASA’s Precipitation Processing Center. NASA 2014.
635 61. Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF 2016.
636 62. Jones, P. First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates.
637 Monthly Weather Review 1999, 127, 2204–2210. doi:10.1175/1520-0493(1999)127.
638 63. Lean, H.W.; Clark, P.A.; Dixon, M.; Roberts, N.M.; Fitch, A.; Forbes, R.; Halliwell, C. Characteristics of
639 High-Resolution Versions of the Met Office Unified Model for Forecasting Convection over the United
640 Kingdom. Mon. Weather Rev. 2008, 136, 3408–3424.
Version June 27, 2021 submitted to Atmosphere 24 of 24
641 64. Beusch, L.; Foresti, L.; Gabella, M.; Hamann, U. Satellite-Based Rainfall Retrieval: From Generalized Linear
642 Models to Artificial Neural Networks. Remote Sensing 2018, 10, 939. doi:10.3390/rs10060939.
643 65. Sharifi, E.; Eitzinger, J.; Dorigo, W. Performance of the State-Of-The-Art Gridded Precipitation
644 Products over Mountainous Terrain: A Regional Study over Austria. Remote Sensing 2019, 11.
645 doi:10.3390/rs11172018.
646 66. Beck, H.; Pan, M.; Roy, T.; Weedon, G.; Pappenberger, F.; van Dijk, A.; Huffman, G.; Adler, R.; Wood, E.
647 Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol.
648 Earth Syst. Sci. 2019, 23, 207–224. doi:10.5194/hess-23-207-2019.
649 67. Dezfuli, A.; Ichoku, C.; Huffman, G.; Mohr, K.; Selker, J.; van de Giesen, N.; Hochreutener, R.;
650 Annor, F. Validation of IMERG precipitation in Africa. Journal of Hydrometeorology 2017, 18.
651 doi:10.1175/JHM-D-17-0139.1.
652 68. Chu, Q.; Xu, Z.; Chen, Y.; Han, D. Evaluation of the ability of the Weather Research and Forecasting model
653 to reproduce a sub-daily extreme rainfall event in Beijing, China using different domain configurations and
654 spin-up times. Hydrology and Earth System Sciences 2018, 22, 3391–3407. doi:10.5194/hess-22-3391-2018.
655 69. Ma, L.M.; Tan, Z.M. Improving the behavior of the cumulus parameterization for
656 tropical cyclone prediction: Convection trigger. Atmospheric Research 2009, 92, 190–211.
657 doi:https://doi.org/10.1016/j.atmosres.2008.09.022.
658 70. Shepherd, T.;Walsh, K. Sensitivity of hurricane track to cumulus parameterization schemes in theWRF
659 model for three intense tropical cyclones: Impact of convective asymmetry. Meteorology and Atmospheric
660 Physics 2017, 129. doi:10.1007/s00703-016-0472-y.
661 71. Bonekamp, P.N.J.; Collier, E.; Immerzeel,W.W. The Impact of Spatial Resolution, Land Use, and Spinup
662 Time on Resolving Spatial Precipitation Patterns in the Himalayas. Journal of Hydrometeorology 2018,
663 19, 1565 – 1581. doi:10.1175/JHM-D-17-0212.1.
664 72. Kanase, D.R.; Deshpande, M.; Phani, M.K.; Mukhopadhyay, P. Evaluation of convective parameterization
665 schemes in simulation of tropical cyclones by Climate Forecast System model: Version 2. Journal of Earth
666 System Science 2020, 129. doi:10.1007/s12040-020-01433-w.
667 73. Reddy, V.; Prasad, S.; Krishna, M.; Reddy, K. Effect of cumulus and microphysical parameterizations on
668 JAL cyclone prediction. Indian Journal of Radio and Space Physics 2014, 43, 103–123.
669 74. Fahad, A.A.; Tanvir, A. Impacts of different cumulus physics over south Asia region with case study
670 tropical cyclone Viyaru. http://arxiv.org/abs/1506.01481 2015, arXiv:1506.01481.
671 75. Biswas, M.; Bernardet, L.; Dudhia, J. Sensitivity of hurricane forecasts to cumulus parameterizations in
672 the Hurricane Weather Research and Forecasting (HWRF) model. Geophysical Research Letters 2014, 41.
673 doi:10.1002/2014GL062071.