1) Herbert, K. M.; Schrettl, S.; Rowan, S. J.; Weder, C. 50th Anniversary Perspective: Solid-State Multistimuli, Multiresponsive Polymeric Materials. Macromolecules. 2017, 50, 8845-8870.
2) Hart, L. R.; Harries, J. L.; Greenland, B. W.; Colquhoun, H. M.; Hayes, W. Healable Supramolecular Polymers. Polym. Chem. 2013, 4, 4860-4870.
3) Gillies, E. R. Reflections on the Evolution of Smart Polymers. Isr. J. Chem. 2019, 1-12.
4) (a) Roth, M. E.; Green, O.; Gnaim, S.; Shabat, D. Dendritic, Oligomeric, and Polymeric Self-Immolative Molecular Amplification. Chem. Rev. 2016, 116, 1309-1352. (b) Ereza, R.; Shabat, D. The azaquinone-methide elimination: comparison study of 1,6- and 1,4-eliminations under physiological conditions. Org. Biomol. Chem. 2008, 6, 2669-2672. (c) Alouane, A.; Labruère, R.; Le Saux, T.; Schmidt, F.; Jullien, L. Self‐Immolative Spacers: Kinetic Aspects, Structure–Property Relationships, and Applications. Angew. Chemie - Int. Ed. 2015, 44, 7492-7509. (d) Sykes, B. M.; Hay, M. P.; Bohinc-Herceg, D.; Helsby, N. A.; O’Connor, C. J.; Denny, W. A. Leaving group effects in reductively triggered fragmentation of 4-nitrobenzyl carbamates. J. Chem. Soc., Perkin Trans. 1, 2000, 1601–1608.
5) Peterson, G. I.; Larsen, M. B.; Boydston, A. J. Controlled Depolymerization: Stimuli-Responsive Self-Immolative Polymer. Macromolecules 2012, 45, 7317-7328.
6) (a) Blencowe, C. A.; Russell, A. T.; Greco, F.; Hayes, W.; Thornthwaite. D. W. Self-Immolative Linkers in Polymeric Delivery Systems. Polym. Chem. 2011, 2, 773-790. (b) Blencowe, C. A.; Thornthwaite. D. W.; Hayes, W.; Russell, A. T. Self-immolative base-mediated conjugate release from triazolylmethylcarbamates. Org. Biomol. Chem., 2015, 13, 8703-8707. (c) Roberts, D. A.; Pilgrim, B. S.; Dell, T. N.; Stevens, M. M. Dynamic pH responsivity of triazole-based self-immolative linkers. Chem. Sci., 2020, 11, 3713-3718.
7) Yardley, R. E.; Kenaree, A. R.; Gillies, E. R. Triggering Depolymerization: Progress and Opportunities for Self-Immolative Polymers. Macromolecules 2019, 52, 6342-6360.
8) Tranoy-Opalinski, I.; Fernandes, A.; Thomas, M.; Gesson, J. P.; Papot, S. Design of Self-Immolative Linkers for Tumour-Activated Prodrug Therapy. Anti-Cancer Agents Med. Chem. 2008, 8, 618-637.
9) Sagi, A.; Segal, E.; Satchi-Fainaro, R.; Shabat, D. Remarkable Drug-Release Enhancement with an Elimination-Based AB3 Self-Immolative Dendritic Amplifier. Bioorganic Med. Chem. 2007, 15, 3720-3727.
10) Kratz, F.; Müller, I. A.; Ryppa, C.; Warnecke, A. Prodrug Strategies in Anticancer Chemotherapy. ChemMedChem 2008, 3, 20-53.
11) Ho, N. H.; Weissleder, R.; Tung, C. H. A Self-Immolative Reporter for β-Galactosidase Sensing. ChemBioChem 2007, 8, 560-566.
12) Avital-Shmilovici, M.; Shabat, D. Enzymatic Activation of Hydrophobic Self-Immolative Dendrimers: The Effect of Reporters with Ionizable Functional Groups. Biorganic Med. Chem. Lett. 2009, 19, 3959-3962.
13) Sella, E.; Shabat, D. Dendritic Chain Reaction. J. Am. Chem. Soc. 2009, 131, 9934-9936.
14) DeWit, M. A.; Gillies, E. R. A Cascade Biodegradable Polymer Based on Alternating Cyclization and Elimination Reaction. J. Am. Chem. Soc. 2009, 131, 18327-18334.
15) Esser-Kahn, A. P.; Sottos, N. R.; White, S. R.; Moore, J. S. Programmable Microcapsules from Self-Immolative Polymers. J. Am. Chem. Soc. 2010, 132, 10266-10268.
16) Seo, W.; Phillips, S. T. Patterned Plastics That Change Physical Structure in Response to Applied Chemical Signals. J. Am. Chem. Soc. 2010, 132, 9234-9235.
17) DiLauro, A. M.; Phillips, S. T. End-capped poly(4,5-dichlorophthalaldehyde): a stable self-immolative poly(aldehyde) for translating specific inputs into amplified outputs, both in solution and the solid state. Polym. Chem. 2015, 6, 3252-3258.
18) Dilauro, A. M.; Lewis, G. G.; Phillips, S. T. Self-Immolative Poly(4,5-dichlorophthalaldehyde) and its Applications in Multi-Stimuli-Responsive Macroscopic Plastics. Angew. Chemie. Int. Ed. 2015, 54, 6200-6205.
19) Babra, T. S.; Trivedi, A.; Warriner, C. N.; Bazin, N.; Castiglione, D.; Sivour, C.; Hayes, W.; Greenland, B. W. Fluoride degradable and thermally debondable polyurethane based adhesive. Polym. Chem. 2017, 8, 7207-7216.
20) Carl, P. L.; Chakravarty, P. K.; Katzenellenbogen, J. A. A Novel Connector Linkage Applicable in Prodrug Design. J. Med. Chem. 1981, 24, 479-480.
21) Albert, A. Chemical Aspects of Selective Toxicity. Nature 1958, 182, 421-423.
22) Gnaim, S.; Shabat, D. Quinone-Methide Species, a Gateway to Functional Molecular Systems: From Self-Immolative Dendrimers to Long-Wave Fluorescent Dyes. Acc. Chem. Res. 2014, 47, 2970-2984.
23) Acton, A. L.; Leroux, F.; Feula, A.; Melia, K.; Sambrook, M. R.; Hayes, W.; Russell, A. T. Self-Immolative Systems for the Disclosure of Reactive Electrophilic Alkylating Agents. Chem. Commun. 2019, 55, 5219-5222.
24) Tuo, W.; Bouqet, J.; Taran, F.; Le Gall, T. A FRET probe for the detection of alkylating agents. Chem. Commun. 2019, 55, 8655-8658.
25) Warnecke, A.; Kratz, F. 2,4-Bis(Hydroxymethyl)Aniline as a Building Block for Oligomers with Self-Eliminating and Multiple Release Properties. J. Org. Chem. 2008, 73, 1546-1552.
26) Perry-Feigenbaum, R.; Baran, P. S.; Shabat, D. The Pyridinone-Methide Elimination. Org. Biomol. Chem. 2009, 7, 4825–4828.
27) Schmid, K. M.; Jensen, L.; Phillips, S. T. A Self-Immolative Spacer That Enables Tunable Controlled Release of Phenols under Neutral Conditions. J. Org. Chem. 2012, 77, 4363-4374.
28) Kunz, H. Der 2‐(Triphenylphosphonio)äthoxycarbonyl‐Rest als Schutzgruppe für die Aminofunktion in Aminosäuren und Peptiden. Chem. Ber. 1976, 109, 2670-2683.
29) Chantreux, D.; Gamet, J. P.; Jacquier, R.; Verducci, J. The 2-(diphenylphosphino) ethyl group (DPPE) as a new carboxyl-protecting group in peptide chemistry. Tetrahedron 1984, 40, 3087-3094.
30) Cockroft, S. L.; Perkins, J.; Zonta, C.; Adams, H.; Spey, S. E.; Low, C. M. R.; Vinter, J. G.; Lawson, K. R.; Urch, C. J.; Hunter, C. A. Substituent Effects on Aromatic Stacking Interactions. Org. Biomol. Chem. 2007, 5, 1062-1080.
31) Iwai, T.; Fujihara, T.; Terao, J.; Tsuji, Y. Iridium-Catalyzed Annulation of N-Arylcarbamoyl Chlorides with Internal Alkynes. J. Am. Chem. Soc. 2010, 132, 9606-9603.
32) Lebleu, T.; Ma, X.; Maddaluno, J.; Legros, J. Selective Monomethylation of Primary Amines with Simple Electrophiles. Chem. Commun. 2014, 50, 1836-1838.
33) Patel, J. Z.; Nevalainen, T. J.; Savinainen, J. R.; Adams, Y.; Laitinen, T.; Runyon, R. S.; Vaara, M.; Ahenkorah, S.; Kaczor, A. A.; Navia-Paldanius, D.; Gynther, M.; Aaltonen, N.; Joharapurkar, A. A.; Jain, M. R.; Haka, A. S.; Maxfield, F. R.; Laitinen, J. T.; Parkkari, T. Optimization of 1,2,5-Thiadiazole Carbamates as Potent and Selective ABHD6 Inhibitors. ChemMedChem 2015, 10, 253-265.
34) Tsukano, C.; Okuno, M.; Takemoto, Y. Palladium-Catalyzed Amidation by Chemoselective C(sp3)-H Activation: Concise Route to Oxindoles Using a Carbamoyl Chloride Precursor. Angew. Chemie - Int. Ed. 2012, 51, 2763-2766.
35) Smith, B. D.; Goodenough-Lashua, D. A. M.; D’Souza, C. J. E.; Norton, K. J.; Schmidt, L. M.; Tung, J. C. Substituent Effects on the Barrier to Carbamate C-N Rotation. Tetrahedron Lett. 2004, 45, 2747-2749.
36) Shanan-Atidi, H.; Bar-Eli, K. H. A Convenient Method for Obtaining Free Energies of Activation by the Coalescence Temperature of an Unequal Doublet. J. Phys. Chem. 1970, 74, 961-963.
37) Johnson, S. L.; Morrison, D. L. Kinetics and mechanism of decarboxylation of N-arylcarbamates. Evidence for kinetically important zwitterionic carbamic acid species of short lifetime. J. Am. Chem. Soc. 1972, 94, 1323-1334.
38) Hughes, E. D.; Ingold, C. K.; Shapiro, U. G. Mechanism of Substitution at a Saturated Carbon Atom. Part VI. Hydrolysis of isopropyl bromide. J. Chem. Soc. 1936, 225-236.
39) Ingold, C. K. Structure and Mechanism in Organic Chemistry; G. Bell and Sons Ltd: London, 1953; pp 346.
40) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 pKa Units: Unification of Different Basicity Scales. J. Org. Chem. 2005, 70, 1019-1028.
41) Kanbayashi, N.; Onitsuka, K. Ruthenium-Catalyzed Regio- and Enantioselective Allylic Substitution with Water: Direct Synthesis of Chiral Allylic Alcohols. Angew. Chemie - Int. Ed. 2011, 50, 5197-5199.
42) Vargas, S.; Rubio, M.; Suárez, A.; Del Río, D.; Álvarez, E.; Pizzano, A. Iridium Complexes with Phosphine - Phosphite Ligands. Structural Aspects and Application in the Catalytic Asymmetric Hydrogenation of N-Aryl Imines. Organometallics. 2006, 25, 961-973.
43) Agilent CrysAlis PRO; Agilent Technologies, Ltd.: Yarnton, Oxfordshire, England, 2014.
44) Palatinus, L.; Chapuis, G. SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007, 40, 786–790.
45) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. CRYSTALS version 12: software for guided crystal structure analysis. J. Appl. Cryst. 2003, 36, 1487.