Number of items: 14.
Balestrieri, F., Johnson, A. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2023)
Explicit uniform bounds for Brauer groups of singular K3 surfaces.
Annales de l'Institut Fourier, 73 (2).
pp. 567-607.
ISSN 0373-0956
doi: https://doi.org/10.5802/aif.3526
Macedo, A. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2022)
Explicit methods for the Hasse norm principle and applications to A_n and S_n extensions.
Mathematical Proceedings of the Cambridge Philosophical Society, 172 (3).
pp. 489-529.
ISSN 1469-8064
doi: https://doi.org/10.1017/S0305004121000268
Manzateanu, A., Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X, Ozman, E., Sutherland, N. and Uysal, R. G.
(2021)
The Hasse norm principle in global function fields.
In: Cojocaru, A. C., Ionica, S. and Lorenzo Garcia, E. (eds.)
Women in Numbers Europe III: Research Directions in Number Theory. Papers from the Workshop (WIN-E3) held at La Hublais, Cesson-Sévigné (France), August 26-30, 2019.
Association for Women in Mathematics Series, 24.
Springer, Cham, pp. 275-290, X, 328.
ISBN 9783030777005
doi: https://doi.org/10.1007/978-3-030-77700-5_9
Kilicer, P., Lauter, K., Lorenzo Garcia, E., Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X, Ozman, E. and Streng, M.
(2020)
A bound on the primes of bad reduction for CM curves of genus 3.
Proceedings of the American Mathematical Society, 148.
p. 2843.
ISSN 0002-9939
doi: https://doi.org/10.1090/proc/14975
Balestrieri, F. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2019)
Arithmetic of rational points and zero-cycles on products of Kummer varieties and K3 surfaces.
International Mathematics Research Notices.
pp. 1-25.
ISSN 1687-0247
doi: https://doi.org/10.1093/imrn/rny303
Frei, C., Loughran, D. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2018)
The Hasse norm principle for abelian extensions.
American Journal of Mathematics, 140 (6).
pp. 1639-1685.
ISSN 1080-6377
doi: https://doi.org/10.1353/ajm.2018.0048
Celik, T. O., Elias, Y., Gunes, B., Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X, Ozman, E., Pries, R. and Thomas, L.
(2018)
Non-ordinary curves with a Prym variety of low p-rank.
In:
Women in Numbers Europe II Contributions to Number Theory and Arithmetic Geometry.
Springer, Cham, Switzerland.
ISBN 9783319749983
Balakrishnan, J. S., Ciperiani, M., Lang, J., Mirza, B. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2016)
Shadow lines in the arithmetic of elliptic curves.
In: Eischen, E. E., Long, L., Pries, R. and Stange, K. (eds.)
Directions in number theory : Proceedings of the 2014 WIN3 Workshop.
Association for Women in Mathematics series (3).
Springer International Publishing.
ISBN 9783319309743
Ros Camacho, A. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2016)
Strangely dual orbifold equivalence I.
Journal of Singularities, 14.
pp. 34-51.
ISSN 1949-2006
doi: https://doi.org/10.5427/jsing.2016.14c
Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2016)
Transcendental Brauer groups of products of CM elliptic curves.
Journal of the London Mathematical Society, 92 (2).
pp. 397-419.
ISSN 1469-7750
doi: https://doi.org/10.1112/jlms/jdv058
Browning, T. D. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2016)
The proportion of failures of the Hasse norm principle.
Mathematika, 62 (02).
pp. 337-347.
ISSN 2041-7942
doi: https://doi.org/10.1112/S0025579315000261
Bouw, I., Cooley, J., Lauter, K., Lorenzo Garcia, E., Manes, M., Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X and Ozman, E.
(2015)
Bad reduction of genus three curves with complex multiplication.
In: Bertin, M. J., Bucur, A., Feigon, B. and Schneps, L. (eds.)
Women in Numbers Europe: Research Directions in Number Theory.
Association for Women in Mathematics Series, 2 (2364-5733).
Springer, pp. 109-151.
ISBN 9783319179865
doi: https://doi.org/10.1007/978-3-319-17987-2
Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2015)
Realising the cup product of local Tate duality.
Journal de Theorie des Nombres de Bordeaux, 27 (1).
pp. 219-244.
ISSN 1246-7405
doi: https://doi.org/10.5802/jtnb.900
Fisher, T. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2014)
Computing the Cassels–Tate pairing on the 3-Selmer group of an elliptic curve.
International Journal of Number Theory, 10 (7).
pp. 1881-1907.
ISSN 1793-7310
doi: https://doi.org/10.1142/S1793042114500602
This list was generated on Sat Feb 22 03:30:10 2025 UTC.