Number of items: 14.
Article
Balestrieri, F., Johnson, A. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2023)
Explicit uniform bounds for Brauer groups of singular K3 surfaces.
Annales de l'Institut Fourier, 73 (2).
pp. 567-607.
ISSN 0373-0956
doi: https://doi.org/10.5802/aif.3526
Macedo, A. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2022)
Explicit methods for the Hasse norm principle and applications to A_n and S_n extensions.
Mathematical Proceedings of the Cambridge Philosophical Society, 172 (3).
pp. 489-529.
ISSN 1469-8064
doi: https://doi.org/10.1017/S0305004121000268
Kilicer, P., Lauter, K., Lorenzo Garcia, E., Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X, Ozman, E. and Streng, M.
(2020)
A bound on the primes of bad reduction for CM curves of genus 3.
Proceedings of the American Mathematical Society, 148.
p. 2843.
ISSN 0002-9939
doi: https://doi.org/10.1090/proc/14975
Balestrieri, F. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2019)
Arithmetic of rational points and zero-cycles on products of Kummer varieties and K3 surfaces.
International Mathematics Research Notices.
pp. 1-25.
ISSN 1687-0247
doi: https://doi.org/10.1093/imrn/rny303
Frei, C., Loughran, D. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2018)
The Hasse norm principle for abelian extensions.
American Journal of Mathematics, 140 (6).
pp. 1639-1685.
ISSN 1080-6377
doi: https://doi.org/10.1353/ajm.2018.0048
Ros Camacho, A. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2016)
Strangely dual orbifold equivalence I.
Journal of Singularities, 14.
pp. 34-51.
ISSN 1949-2006
doi: https://doi.org/10.5427/jsing.2016.14c
Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2016)
Transcendental Brauer groups of products of CM elliptic curves.
Journal of the London Mathematical Society, 92 (2).
pp. 397-419.
ISSN 1469-7750
doi: https://doi.org/10.1112/jlms/jdv058
Browning, T. D. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2016)
The proportion of failures of the Hasse norm principle.
Mathematika, 62 (02).
pp. 337-347.
ISSN 2041-7942
doi: https://doi.org/10.1112/S0025579315000261
Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2015)
Realising the cup product of local Tate duality.
Journal de Theorie des Nombres de Bordeaux, 27 (1).
pp. 219-244.
ISSN 1246-7405
doi: https://doi.org/10.5802/jtnb.900
Fisher, T. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2014)
Computing the Cassels–Tate pairing on the 3-Selmer group of an elliptic curve.
International Journal of Number Theory, 10 (7).
pp. 1881-1907.
ISSN 1793-7310
doi: https://doi.org/10.1142/S1793042114500602
Book or Report Section
Manzateanu, A., Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X, Ozman, E., Sutherland, N. and Uysal, R. G.
(2021)
The Hasse norm principle in global function fields.
In: Cojocaru, A. C., Ionica, S. and Lorenzo Garcia, E. (eds.)
Women in Numbers Europe III: Research Directions in Number Theory. Papers from the Workshop (WIN-E3) held at La Hublais, Cesson-Sévigné (France), August 26-30, 2019.
Association for Women in Mathematics Series, 24.
Springer, Cham, pp. 275-290, X, 328.
ISBN 9783030777005
doi: https://doi.org/10.1007/978-3-030-77700-5_9
Celik, T. O., Elias, Y., Gunes, B., Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X, Ozman, E., Pries, R. and Thomas, L.
(2018)
Non-ordinary curves with a Prym variety of low p-rank.
In:
Women in Numbers Europe II Contributions to Number Theory and Arithmetic Geometry.
Springer, Cham, Switzerland.
ISBN 9783319749983
Balakrishnan, J. S., Ciperiani, M., Lang, J., Mirza, B. and Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X
(2016)
Shadow lines in the arithmetic of elliptic curves.
In: Eischen, E. E., Long, L., Pries, R. and Stange, K. (eds.)
Directions in number theory : Proceedings of the 2014 WIN3 Workshop.
Association for Women in Mathematics series (3).
Springer International Publishing.
ISBN 9783319309743
Bouw, I., Cooley, J., Lauter, K., Lorenzo Garcia, E., Manes, M., Newton, R.
ORCID: https://orcid.org/0000-0003-4925-635X and Ozman, E.
(2015)
Bad reduction of genus three curves with complex multiplication.
In: Bertin, M. J., Bucur, A., Feigon, B. and Schneps, L. (eds.)
Women in Numbers Europe: Research Directions in Number Theory.
Association for Women in Mathematics Series, 2 (2364-5733).
Springer, pp. 109-151.
ISBN 9783319179865
doi: https://doi.org/10.1007/978-3-319-17987-2
This list was generated on Sat Feb 22 03:30:10 2025 UTC.