Number of items: 29.
Article
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tuma, M.
(2024)
Sparse linear least squares problems.
Acta Numerica.
ISSN 1474-0508
(In Press)
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tůma, M.
(2024)
Avoiding breakdown in incomplete factorizations in low precision arithmetic.
ACM Transactions on Mathematical Software, 50 (2).
9.
ISSN 1557-7295
doi: https://doi.org/10.1145/3651155
Fawkes, J. M., Gould, N. I. M. and Scott, J. A. ORCID: https://orcid.org/0000-0003-2130-1091
(2023)
Approximating sparse Hessian matrices using large-scale linear least squares.
Numerical Algorithms.
ISSN 1572-9265
doi: https://doi.org/10.1007/s11075-023-01681-z
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tůma, M.
(2022)
Solving large linear least squares problems with linear equality constraints.
BIT Numerical Mathematics, 62.
pp. 1765-1787.
ISSN 1572-9125
doi: https://doi.org/10.1007/s10543-022-00930-2
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tuma, M.
(2022)
A null-space approach for large-scale symmetric saddle point systems with a small and non zero (2,2) block.
Numerical Algorithms, 90.
pp. 1639-1667.
ISSN 1572-9265
doi: https://doi.org/10.1007/s11075-021-01245-z
Al Daas, H., Jolivet, P. and Scott, J. A. ORCID: https://orcid.org/0000-0003-2130-1091
(2022)
A robust algebraic domain decomposition preconditioner for sparse normal equations.
SIAM Journal on Scientific Computing, 44 (3).
pp. 1047-1068.
ISSN 1095-7197
doi: https://doi.org/10.1137/21M1434891
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tůma, M.
(2022)
A computational study of using black-box QR solvers for large-scale sparse-dense linear least squares problems.
ACM Transactions on Mathematical Software, 48 (1).
pp. 1-24.
ISSN 1557-7295
doi: https://doi.org/10.1145/3494527
Al Daas, H., Rees, T. and Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091
(2021)
Two-level Nystrom-Schur preconditioner for sparse symmetric positive definite matrices.
SIAM Journal on Scientific Computing, 43 (6).
A3837-A3861.
ISSN 1095-7197
doi: https://doi.org/10.1137/21M139548X
Dauzickaite, I., Lawless, A. S. ORCID: https://orcid.org/0000-0002-3016-6568, Scott, J. A. ORCID: https://orcid.org/0000-0003-2130-1091 and Leeuwen, P. J.
(2021)
On time-parallel preconditioning for the state formulation of incremental weak constraint 4D-Var.
Quarterly Journal of the Royal Meteorological Society, 147 (740).
pp. 3521-3529.
ISSN 1477-870X
doi: https://doi.org/10.1002/qj.4140
Daužickaitė, I. ORCID: https://orcid.org/0000-0002-1285-1764, Lawless, A. S. ORCID: https://orcid.org/0000-0002-3016-6568, Scott, J. A. ORCID: https://orcid.org/0000-0003-2130-1091 and Van Leeuwen, P. J. ORCID: https://orcid.org/0000-0003-2325-5340
(2021)
Randomised preconditioning for the forcing formulation of weak constraint 4D‐Var.
Quarterly Journal of the Royal Meteorological Society, 147 (740).
pp. 3719-3734.
ISSN 1477-870X
doi: https://doi.org/10.1002/qj.4151
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tuma, M.
(2020)
Strengths and limitations of stretching for least-squares problems with some dense rows.
ACM Transactions on Mathematical Software (TOMS), 47 (1).
pp. 1-25.
ISSN 0098-3500
doi: https://doi.org/10.1145/3412559
Dauzickaite, I., Lawless, A. S. ORCID: https://orcid.org/0000-0002-3016-6568, Scott, J. A. ORCID: https://orcid.org/0000-0003-2130-1091 and Van Leeuwen, P. J.
(2020)
Spectral estimates for saddle point matrices arising in weak constraint four-dimensional variational data assimilation.
Numerical Linear Algebra with Applications, 27 (5).
ISSN 1099-1506
doi: https://doi.org/10.1002/nla.2313
Gould, N. I.M., Rees, T. and Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091
(2019)
Convergence and evaluation-complexity analysis of a regularized tensor-Newton method for solving nonlinear least-squares problems.
Computational Optimization and Applications, 73 (1).
pp. 1-35.
ISSN 0926-6003
doi: https://doi.org/10.1007/s10589-019-00064-2
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tuma, M.
(2019)
Sparse stretching for solving sparse-dense linear least-squares problems.
SIAM Journal on Scientific Computing, 41 (3).
A1604-A1625.
ISSN 1095-7197
doi: https://doi.org/10.1137/18M1181353
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tuma, M.
(2018)
A Schur complement approach to preconditioning sparse linear least-squares problems with some dense rows.
Numerical Algorithms, 79 (4).
pp. 1147-1168.
ISSN 1572-9265
doi: https://doi.org/10.1007/s11075-018-0478-2
Chow, E., Hartwig, A., Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Dongarra, J.
(2018)
Using Jacobi iterations and blocking for solving sparse
triangular systems in incomplete factorization
preconditioning.
Journal of Parallel and Distributed Computing, 119.
pp. 219-230.
ISSN 0743-7315
doi: https://doi.org/10.1016/j.jpdc.2018.04.017
Rees, T. and Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091
(2018)
A comparative study of null-space factorizations for sparse symmetric saddle point systems.
Numerical Linear Algebra with Applications, 25 (1).
e2103.
ISSN 1099-1506
doi: https://doi.org/10.1002/nla.2103
Lungten, S., Schilders, W. H. A. and Scott, J. A. ORCID: https://orcid.org/0000-0003-2130-1091
(2018)
Preordering saddle-point systems for sparse LDLT
factorization without pivoting.
Numerical Linear Algebra with Applications, 25 (5).
e2173.
ISSN 1099-1506
doi: https://doi.org/10.1002/nla.2173
Hook, J., Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091, Tisseur, F. and Hogg, J.
(2018)
A max-plus approach to incomplete Cholesky factorization preconditioners.
SIAM Journal on Scientific Computing, 40 (4).
A1987-A2004.
ISSN 1095-7197
doi: https://doi.org/10.1137/16M1107735
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tuma, M.
(2017)
Improving the stability and robustness of incomplete symmetric indefinite factorization preconditioners.
Numerical Linear Algebra with Applications, 24 (5).
e2099.
ISSN 1099-1506
doi: https://doi.org/10.1002/nla.2099
Hogg, J., Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Thorne, S.
(2017)
Numerically-aware orderings for sparse symmetric indefinite linear systems.
ACM Transactions on Mathematical Software (TOMS), 44 (2).
pp. 1-22.
ISSN 0098-3500
doi: https://doi.org/10.1145/3104991
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Gould, N.
(2017)
The state-of-the-art of preconditioners for sparse linear least-squares problems.
ACM Transactions on Mathematical Software (TOMS), 43 (4).
36.
ISSN 0098-3500
doi: https://doi.org/10.1145/3014057
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091
(2017)
On using Cholesky-based factorizations and regularization for solving rank-deficient sparse linear least-squares problems.
SIAM Journal on Scientific Computing, 39 (4).
C319-C339.
ISSN 1095-7197
doi: https://doi.org/10.1137/16M1065380
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tuma, M.
(2017)
Solving mixed sparse-dense linear least-squares problems by preconditioned iterative methods.
SIAM Journal on Scientific Computing, 39 (6).
A2422-A2437.
ISSN 1095-7197
doi: https://doi.org/10.1137/16M1108339
Dunning, P. D., Ovtchinnikov, E., Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Kim, H. A.
(2016)
Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver.
International Journal for Numerical Methods in Engineering, 107 (12).
pp. 1029-1053.
ISSN 0029-5981
doi: https://doi.org/10.1002/nme.5203
Gould, N. and Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091
(2016)
A note on performance profiles for benchmarking software.
ACM Transactions on Mathematical Software (TOMS), 43 (2).
15.
ISSN 0098-3500
doi: https://doi.org/10.1145/2950048
Hogg, J. D., Ovtchinnikov, E. and Scott, J. A. ORCID: https://orcid.org/0000-0003-2130-1091
(2016)
A sparse symmetric indefinite direct solver for GPU architectures.
ACM Transactions on Mathematical Software (TOMS), 42 (1).
1.
ISSN 0098-3500
doi: https://doi.org/10.1145/2756548
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tuma, M.
(2016)
Preconditioning of linear least squares by robust incomplete factorization for implicitly held normal equations.
SIAM Journal on Scientific Computing, 38 (6).
C603-C623.
ISSN 1095-7197
doi: https://doi.org/10.1137/16M105890X
Book
Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and Tůma, M.
(2023)
Algorithms for sparse linear systems.
Nečas Center Series.
Springer, Cham, pp242.
ISBN 9783031258190
doi: https://doi.org/10.1007/978-3-031-25820-6
This list was generated on Tue Jan 21 01:01:20 2025 UTC.