Number of items: 5.
Article
Caetano, A. M., Chandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283, Claeys, X., Gibbs, A., Hewett, D. P. and Moiola, A.
(2024)
Integral equation methods for acoustic scattering by fractals.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
ISSN 1364-5021
doi: https://doi.org/10.1098/rspa.2023.0650
(In Press)
Caetano, A. M., Chandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283, Gibbs, A., Hewett, D. P. and Moiola, A.
(2024)
A Hausdorff-measure boundary element method for acoustic scattering by fractal screens.
Numerische Mathematik.
ISSN 0945-3245
doi: https://doi.org/10.1007/s00211-024-01399-7
Gibbs, A., Chandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283, Langdon, S. and Moiola, A.
(2020)
A high frequency boundary element method for scattering by a class of multiple obstacles.
IMA Journal of Numerical Analysis, 41 (2).
pp. 1197-1239.
ISSN 1464-3642
doi: https://doi.org/10.1093/imanum/draa025
Chandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283, Spence, E. A., Gibbs, A. and Smyshlyaev, V. P.
(2020)
High-frequency bounds for the Helmholtz equation under parabolic trapping and applications in numerical analysis.
SIAM Journal on Mathematical Analysis (SIMA), 52 (1).
pp. 845-893.
ISSN 0036-1410
doi: https://doi.org/10.1137/18M1234916
Thesis
Gibbs, A. J.
(2017)
Numerical methods for high frequency scattering by multiple obstacles.
PhD thesis, University of Reading.
This list was generated on Sat Dec 21 12:28:32 2024 UTC.