Accessibility navigation


Items where Author is "Gibbs, Mr Andrew"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
[tool] Batch List
Group by: Item Type | No Grouping
Jump to: Article | Thesis
Number of items: 5.

Article

Caetano, A. M., Chandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283, Claeys, X., Gibbs, A., Hewett, D. P. and Moiola, A. (2024) Integral equation methods for acoustic scattering by fractals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. ISSN 1364-5021 doi: https://doi.org/10.1098/rspa.2023.0650 (In Press)

Caetano, A. M., Chandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283, Gibbs, A., Hewett, D. P. and Moiola, A. (2024) A Hausdorff-measure boundary element method for acoustic scattering by fractal screens. Numerische Mathematik. ISSN 0945-3245 doi: https://doi.org/10.1007/s00211-024-01399-7

Gibbs, A., Chandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283, Langdon, S. and Moiola, A. (2020) A high frequency boundary element method for scattering by a class of multiple obstacles. IMA Journal of Numerical Analysis, 41 (2). pp. 1197-1239. ISSN 1464-3642 doi: https://doi.org/10.1093/imanum/draa025

Chandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283, Spence, E. A., Gibbs, A. and Smyshlyaev, V. P. (2020) High-frequency bounds for the Helmholtz equation under parabolic trapping and applications in numerical analysis. SIAM Journal on Mathematical Analysis (SIMA), 52 (1). pp. 845-893. ISSN 0036-1410 doi: https://doi.org/10.1137/18M1234916

Thesis

Gibbs, A. J. (2017) Numerical methods for high frequency scattering by multiple obstacles. PhD thesis, University of Reading.

This list was generated on Sat Dec 21 12:28:32 2024 UTC.

Page navigation