Items where Author is "Kunkel, Dr Julian"
Group by: Item Type | No Grouping Number of items: 44. ArticleZaznov, I., Kunkel, J. M., Badii, A. and Dufour, A. ORCID: https://orcid.org/0000-0003-0519-648X (2024) The intraday dynamics predictor: a TrioFlow Fusion of Convolutional Layers and Gated Recurrent Units for high-frequency price movement forecasting. Applied Sciences, 14 (7). 2984. ISSN 2076-3417 doi: https://doi.org/10.3390/app14072984 Galea, D., Kunkel, J. and Lawrence, B. N. ORCID: https://orcid.org/0000-0001-9262-7860 (2023) TCDetect: a new method of detecting the presence of tropical cyclones using deep learning. Artificial Intelligence for the Earth Systems, 2 (3). ISSN 2769-7525 doi: https://doi.org/10.1175/aies-d-22-0045.1 Zaznov, I. ORCID: https://orcid.org/0000-0003-1229-5515, Kunkel, J., Dufour, A. ORCID: https://orcid.org/0000-0003-0519-648X and Badii, A. (2022) Predicting stock price changes based on the limit order book: a survey. Mathematics, 10 (8). 1234. ISSN 2227-7390 doi: https://doi.org/10.3390/math10081234 Kunkel, J., Filinger, W., Meesters, C. and Gerbes, A. (2020) The HPC certification forum: toward a globally acknowledged HPC certification. Computing in Science and Engineering, 22 (4). ISSN 1521-9615 doi: https://doi.org/10.1109/MCSE.2020.2996073 Wang, T., Zhuang, L., Kunkel, J., Xiao, S. and Zhao, C. (2020) Parallelization and I/O performance optimization of a global nonhydrostatic dynamical core using MPI. Computers, Materials & Continua, 63 (3). pp. 1399-1413. ISSN 1546-2226 doi: https://doi.org/10.32604/cmc.2020.09701 Kunkel, J., Himstedt, K., Filinger, W., Acquaviva, J.-T., Gerbes, A. and Lafayette, L. (2020) One year HPC certification forum in retrospective. Journal of Computational Science Education, 11 (1). pp. 29-35. ISSN 2153-4136 doi: https://doi.org/10.22369/issn.2153-4136/11/1/6 Kunkel, J., Jumah, N., Novikova, A., Ludwig, T., Yashiro, H., Maruyama, N., Wahib, M. and Thuburn, J. (2020) AIMES: advanced computation and I/O methods for earth-system simulations. Software for Exascale Computing - SPPEXA 2016-2019. Lectures Notes in Computational Science and Engineering (136). pp. 61-102. ISSN 1439-7358 doi: https://doi.org/10.1007/978-3-030-47956-5_5 Kunkel, J. M. and Pedro, L. R. (2020) Potential of I/O aware workflows in climate and weather. Supercomputing Frontiers and Innovations, 7 (2). pp. 35-53. ISSN 2313-8734 doi: https://doi.org/10.14529/jsfi200203 Torres, R., Kunkel, J. M., Dolz, M. F. and Ludwig, T. (2019) A similarity study of I/O traces via string kernels. The Journal of Supercomputing, 75 (12). pp. 7814-7826. ISSN 0920-8542 doi: https://doi.org/10.1007/s11227-018-2471-x Kunkel, J. M., Shoukourian, H., Heidari, R. and Wilde, T. (2019) Interference of billing and scheduling strategies for energy and cost savings in modern data centers. Sustainable Computing: Informatics and Systems, 23. pp. 49-66. ISSN 2210-5379 doi: https://doi.org/10.1016/j.suscom.2019.04.003 Kunkel, J., Himstedt, K., Hübbe, N., Stüben, H., Schröder, S., Kuhn, M., Riebisch, M., Olbrich, S., Ludwig, T., Filinger, W., Acquaviva, J.-T., Gerbes, A. and Lafayette, L. (2019) Towards an HPC certification program. Journal of Computational Science Education, 10 (1). pp. 88-89. ISSN 2153-4136 doi: https://doi.org/10.22369/issn.2153-4136/10/1/14 Kunkel, J. and Dolz, M. F. (2018) Understanding hardware and software metrics with respect to power consumption. Sustainable Computing: Informatics and Systems, 17. pp. 43-54. ISSN 2210-5379 doi: https://doi.org/10.1016/j.suscom.2017.10.016 Lüttgau, J., Kuhn, M., Duwe, K., Alforov, Y., Betke, E., Kunkel, J. and Ludwig, T. (2018) Survey of storage systems for high-performance computing. Supercomputing Frontiers and Innovations, 5 (1). ISSN 2313-8734 doi: https://doi.org/10.14529/jsfi180103 Jumah, N., Kunkel, J. M., Zängl, G., Yashiro, H., Dubos, T. and Meurdesoif, T. (2017) GGDML: icosahedral models language extensions. Journal of Computer Science Technology Updates, 4 (1). pp. 1-10. ISSN 2410-2938 doi: https://doi.org/10.15379/2410-2938.2017.04.01.01 Kunkel, J. M., Novikova, A. and Betke, E. (2017) Towards decoupling the selection of compression algorithms from quality constraints – an investigation of lossy compression efficiency. Supercomputing Frontiers and Innovations, 4 (4). pp. 17-33. ISSN 2313-8734 doi: https://doi.org/10.14529/jsfi170402 Dolz, M. F., Kunkel, J., Chasapis, K. and Catalán, S. (2016) An analytical methodology to derive power models based on hardware and software metrics. Computer Science - Research and Development, 31 (4). pp. 165-174. ISSN 1865-2034 doi: https://doi.org/10.1007/s00450-015-0298-8 Kunkel, J. M. (2016) Analyzing data properties using statistical sampling: illustrated on scientific file formats. Supercomputing Frontiers and Innovations, 3 (3). pp. 34-39. ISSN 2409-6008 doi: https://doi.org/10.14529/jsfi160304 Schmidt, J. F. and Kunkel, J. M. (2016) Predicting I/O performance in HPC using artificial neural networks. Supercomputing Frontiers and Innovations, 3 (3). pp. 19-33. ISSN 2313-8734 doi: https://doi.org/10.14529/jsfi160303 Kuhn, M., Kunkel, J. M. and Ludwig, T. (2016) Data compression for climate data. Supercomputing Frontiers and Innovations, 3 (1). pp. 75-94. ISSN 2313-8734 doi: https://doi.org/10.14529/jsfi160105 Kunkel, J. M., Aguilera, A., Hübbe, N., Wiedemann, M. and Zimmer, M. (2015) Monitoring energy consumption with SIOX. Computer Science - Research and Development, 30 (2). pp. 125-133. ISSN 1865-2034 doi: https://doi.org/10.1007/s00450-014-0271-y Kunkel, J. M., Kuhn, M. and Ludwig, T. (2014) Exascale storage systems: an analytical study of expenses. Supercomputing Frontiers and Innovations, 1 (1). pp. 116-134. ISSN 2409-6008 doi: https://doi.org/10.14529/jsfi140106 Book or Report SectionKunkel, J. and Betke, E. (2017) An MPI-IO In-Memory driver for non-volatile pooled memory of the Kove XPD. In: Kunkel, J., Yokota, R., Taufer, M. and Shalf, J. (eds.) High Performance Computing. Lecture Notes in Computer Science, 10524 (10524). Springer, Cham, pp. 679-690. ISBN 9783319676296 doi: https://doi.org/10.1007/978-3-319-67630-2_48 Luettgau, J. and Kunkel, J. (2017) Simulation of hierarchical storage systems for TCO and QoS. In: Kunkel, J., Yokota, R., Taufer, M. and Shalf, J. (eds.) High Performance Computing. Lecture Notes in Computer Science, 10524 (10524). Springer, Cham, pp. 132-144. ISBN 9783319676296 doi: https://doi.org/10.1007/978-3-319-67630-2_12 Kunkel, J., Novikova, A., Betke, E. and Schaare, A. (2017) Toward decoupling the selection of compression algorithms from quality constraints. In: Kunkel, J. M., Yokota, R., Taufer, M. and Shalf, J. (eds.) High Performance Computing. Lecture Notes in Computer Science (10524). Springer, pp. 3-14. ISBN 9783319676296 doi: https://doi.org/10.1007/978-3-319-67630-2_1 Torres, R., Kunkel, J. M., Dolz, M. F. and Ludwig, T. (2017) A novel string representation and kernel function for the comparison of I/O access patterns. In: Malyshkin, V. (ed.) Parallel Computing Technologies: 14th International Conference, PaCT 2017, Nizhny Novgorod, Russia, September 4-8, 2017, Proceedings. Lecture Notes in Computer Science, 10421 (10421 2017). Springer, Cham, pp. 500-512. ISBN 9783319629315 doi: https://doi.org/10.1007/978-3-319-62932-2_48 Kunkel, J. M. (2016) Analyzing data properties using statistical sampling techniques – illustrated on scientific file formats and compression features. In: Taufer, M., Mohr, B. and Kunkel, J. (eds.) High Performance Computing. Lecture Notes in Computer Science, 9945. Springer, Cham, pp. 130-141. ISBN 9783319460796 doi: https://doi.org/10.1007/978-3-319-46079-6_10 Kunkel, J., Zimmer, M. and Betke, E. (2015) Predicting performance of non-contiguous I/O with machine learning. In: Kunkel, J. M. and Ludwig, T. (eds.) High Performance Computing. Lecture Notes in Computer Science (9137). Springer, pp. 257-273. ISBN 9783319201184 doi: https://doi.org/10.1007/978-3-319-20119-1_19 Kunkel, J. M., Zimmer, M., Hübbe, N., Aguilera, A., Mickler, H., Wang, X., Chut, A., Bönisch, T., Lüttgau, J., Michel, R. and Weging, J. (2014) The SIOX architecture – coupling automatic monitoring and optimization of parallel I/O. In: Kunkel, J. M., Ludwig, T. and Meuer, H. W. (eds.) Supercomputing. Lecture Notes in Computer Science (8488). Springer, pp. 245-260. ISBN 9783319075174 doi: https://doi.org/10.1007/978-3-319-07518-1_16 Conference or Workshop ItemGadban, F., Kunkel, J. and Ludwig, T. (2020) Investigating the overhead of the REST protocol to reveal the potential for using cloud services for HPC storage. In: HPC I/O in the Data Center Workshop, 21-25 June 2020. doi: https://doi.org/10.1007/978-3-030-59851-8_10 (High Performance Computing. ISC High Performance 2020. Lecture Notes in Computer Science) Jumah, N. and Kunkel, J. (2020) Optimizing memory bandwidth efficiency with user-preferred kernel merge. In: Euro-Par 2019: Parallel Processing Workshops, 26–30 Aug 2019, Göttingen, Germany, pp. 69-81. doi: https://doi.org/10.1007/978-3-030-48340-1_6 Betke, E. and Kunkel, J. (2020) Semi-automatic assessment of I/O behavior by inspecting the individual client-node timelines— an explorative study on 10^6 jobs. In: ISC HPC, 21-25 Jun 2020, Frankfurt, Germany, pp. 166-184. doi: https://doi.org/10.1007/978-3-030-50743-5_9 Turner, A., Sloan-Murphy, D., Sivalingam, K., Richardson, H. and Kunkel, J. (2019) Analysis of parallel I/O use on the UK national supercomputing service, ARCHER using Cray's LASSi and EPCC SAFE. In: Memory Bound Computing. Cray User Group, 5-9 May 2019, Montréal, Canda. Jumah, N. and Kunkel, J. (2019) Automatic vectorization of stencil codes with the GGDML language extensions. In: Workshop on Programming Models for SIMD/Vector Processing, 2019/02/16, Washington DC, USA, pp. 1-7. doi: https://doi.org/10.1145/3303117.3306160 Betke, E. and Kunkel, J. (2019) Footprinting parallel I/O – machine learning to classify application’s I/O behavior. In: HPC IODC workshop, pp. 214-226. doi: https://doi.org/10.1007/978-3-030-34356-9_18 Jum'ah, N. and Kunkel, J. (2019) Performance portability of Earth system models with user-controlled GGDML code translation. In: Third International Workshop on Performance Portable Programming Models for Accelerators, 24-28 June 2018, Frankfurt, Germany, pp. 693-710. (ISBN 9783030024642) Jumah, N. and Kunkel, J. (2019) Scalable parallelization of stencils using MODA. In: P^3MA workshop, pp. 142-154. doi: https://doi.org/10.1007/978-3-030-34356-9_13 Kunkel, J. and Betke, E. (2019) Tracking user-perceived I/O slowdown via probing. In: HPC-IODC workshop, Frankfurt, Germany, pp. 169-182. doi: https://doi.org/10.1007/978-3-030-34356-9_15 Betke, E. and Kunkel, J. (2018) Benefit of DDN's IME-FUSE for I/O intensive HPC applications. In: Workshop on Performance and Scalability of Storage Systems, 24-28 June 2018, Frankfurt, Germany, pp. 131-144. (ISBN 9783030024642) Torres, R., Kunkel, J. M., Dolz, M. F. and Ludwig, T. (2018) Comparison of Clang Abstract Syntax Trees using string kernels. In: CADO 2018, 16-20 July, Orleans, France, pp. 106-113. Lüttgau, J. and Kunkel, J. (2018) Cost and performance modeling for Earth system data management and beyond. In: HPC I/O in the Data Center Workshop, 24-28 June 2018, Frankfurt, Germany, pp. 23-35. (ISBN 9783030024642) Kunkel, J. M., Betke, E., Bryson, M., Carns, P., Francis, R., Frings, W., Laifer, R. and Mendez, S. (2018) Tools for analyzing parallel I/O. In: HPC I/O in the Data Center Workshop, 24-28 June 2018, Frankfurt, Germany, pp. 49-70. (ISBN 9783030024642) Lüttgau, J., Snyder, S., Carns, P., Wozniak, J. M., Kunkel, J. and Ludwig, T. (2018) Toward understanding I/O behavior in HPC workflows. In: PDSW-DISCS, 12 November 2018, Dallas, Texas, pp. 64-75. Alforov, Y., Novikova, A., Kuhn, M., Kunkel, J. and Ludwig, T. (2018) Towards green scientific data compression through high-level I/O interfaces. In: SBAC-PAD 2018, 24-27 September, Lyon, France, pp. 209-216. Kunkel, J. M. and Markomanolis, G. S. (2018) Understanding metadata latency with MDWorkbench. In: Workshop on Performance and Scalability of Storage Systems, 24-28 June 2018, Frankfurt, Germany, pp. 75-88. (ISBN 9783030024642) |