Accessibility navigation


Browse by Creator

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
[tool] Batch List
Group by: Date | No Grouping | Item Type
Number of items: 31.

Calver, E., Pryer, T. and Lukyanov, A. V. (2022) Hydraulic jumps & the role of surface tension. Physics Letters A, 451. 128418. ISSN 0375-9601 doi: https://doi.org/10.1016/j.physleta.2022.128418

Ashby, B., Bortolozo, C., Lukyanov, A. and Pryer, T. (2021) Adaptive modelling of variably saturated seepage problems. The Quarterly Journal of Mechanics and Applied Mathematics, 74 (1). pp. 55-81. ISSN 0033-5614 doi: https://doi.org/10.1093/qjmam/hbab001

Katzourakis, N. and Pryer, T. (2020) Second order L∞ variational problems and the ∞-polylapacian. Advances in Calculus of Variations, 13 (2). pp. 115-140. ISSN 1864-8266 doi: https://doi.org/10.1515/acv-2016-0052

Pryer, T. and Katzourakis, N. (2019) On the numerical approximation of p-biharmonic and ∞-biharmonic functions. Numerical Methods for Partial Differential Equations, 35 (1). pp. 155-180. ISSN 1098-2426 doi: https://doi.org/10.1002/num.22295

Sirimark, P., Lukyanov, A. and Pryer, T. (2019) Surface permeability of particulate porous media. Transport in porous media, 130 (2). pp. 637-654. ISSN 0169-3913 doi: https://doi.org/10.1007/s11242-019-01332-9

Jackaman, J., Papamikos, G. and Pryer, T. (2019) The design of conservative finite element discretisations for the vectorial modified KdV equation. Applied Numerical Mathematics, 137. pp. 230-251. ISSN 0168-9274 doi: https://doi.org/10.1016/j.apnum.2018.10.006

Papamikos, G. and Pryer, T. (2019) A Lie symmetry analysis and explicit solutions of the two-dimensional ∞-Polylaplacian. Studies in Applied Mathematics, 142 (1). pp. 48-64. ISSN 0022-2526 doi: https://doi.org/10.1111/sapm.12232

Sirimark, P., Lukyanov, A. and Pryer, T. (2018) Surface permeability of porous media particles and capillary transport. The European Physical Journal E - Soft Matter & Biological Physics, 41 (9). 106. ISSN 1292-895X doi: https://doi.org/10.1140/epje/i2018-11716-6

Pryer, T. (2018) On the finite element approximation of ∞-harmonic functions. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 148 (4). pp. 819-834. ISSN 0308-2105 doi: https://doi.org/10.1017/S0308210517000294

Kesici, E., Pelloni, B., Pryer, T. and Smith, D. (2018) A numerical implementation of the unified Fokas transform for evolution problems on a finite interval. European Journal of Applied Mathematics, 29 (3). pp. 543-567. ISSN 1469-4425 doi: https://doi.org/10.1017/S0956792517000316

Georgoulis, E. H. and Pryer, T. (2018) Recovered finite element methods. Computer Methods in Applied Mechanics and Engineering, 332. pp. 303-324. ISSN 0045-7825 doi: https://doi.org/10.1016/j.cma.2017.12.026

Katzourakis, N. and Pryer, T. (2018) A review from the PDE viewpoint of Hamilton-Jacobi-Bellman equations arising in optimal control with vectorial cost. Journal of Nonlinear Functional Analysis, 2018. 6. ISSN 2052-532X doi: https://doi.org/10.23952/jnfa.2018.6

Giesselmann, J. and Pryer, T. (2017) A posteriori analysis for dynamic model adaptation in convection dominated problems. Mathematical models and methods in applied Sciences (M3AS), 27 (13). pp. 2381-2423. ISSN 0218-2025 doi: https://doi.org/10.1142/S0218202517500476

Georgoulis, E. H. and Pryer, T. (2017) Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data. Calcolo, 54 (4). pp. 1533-1551. ISSN 1126-5434 doi: https://doi.org/10.1007/s10092-017-0240-5

Cangiani, A., Georgoulis, E. H., Pryer, T. and Sutton, O. J. (2017) A posteriori error estimates for the virtual element method. Numerische Mathematik, 137 (4). pp. 857-893. ISSN 0029-599X doi: https://doi.org/10.1007/s00211-017-0891-9

Lukyanov, A. V. and Pryer, T. (2017) Hydrodynamics of moving contact lines: macroscopic versus microscopic. Langmuir, 33 (34). pp. 8582-8590. ISSN 0743-7463 doi: https://doi.org/10.1021/acs.langmuir.7b02409

Giesselmann, J. and Pryer, T. (2017) Goal-oriented error analysis of a DG scheme for a second gradient elastodynamics model. In: Cancès, C. and Omnes, P. (eds.) Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects: FVCA 8, Lille June 2017: conference proceedings. Springer Proceedings in Mathematics & Statistics (199). Springer, pp. 457-466. doi: https://doi.org/10.1007/978-3-319-57397-7_39

Mansfield, E. L. and Pryer, T. (2017) Noether-type discrete conserved quantities arising from a finite element approximation of a variational problem. Foundations of Computational Mathematics, 17 (3). pp. 729-762. ISSN 1615-3375 doi: https://doi.org/10.1007/s10208-015-9298-0

Katzourakis, N. and Pryer, T. (2016) On the numerical approximation of ∞-harmonic mappings. Nonlinear differential equations and applications, 23 (6). 61. ISSN 1420-9004 doi: https://doi.org/10.1007/s00030-016-0415-9

Giesselmann, J. and Pryer, T. (2016) Reduced relative entropy techniques for a posteriori analysis of multiphase problems in elastodynamics. IMA Journal of Numerical Analysis, 36 (4). pp. 1685-1714. ISSN 1464-3642 doi: https://doi.org/10.1093/imanum/drv052

Giesselmann, J. and Pryer, T. (2016) Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics. BIT Numerical Mathematics, 56 (1). pp. 99-127. ISSN 1572-9125 doi: https://doi.org/10.1007/s10543-015-0560-2

Lakkis, O., Makridakis, C. and Pryer, T. (2015) A comparison of duality and energy a posteriori estimates for $\mathrm {L}_{\infty }(0,T;\mathrm {L}_2(\varOmega ))$ in parabolic problems. Mathematics of Computation, 84 (294). pp. 1537-1569. ISSN 0025-5718 doi: https://doi.org/10.1090/S0025-5718-2014-02912-8

Giesselmann, J. and Pryer, T. (2015) Energy consistent discontinuous Galerkin methods for a quasi-incompressible diffuse two phase flow model. ESAIM: Mathematical Modelling and Numerical Analysis M2AN, 49 (1). pp. 275-301. ISSN 1290-3841 doi: https://doi.org/10.1051/m2an/2014033

Giesselmann, J., Makridakis, C. and Pryer, T. (2015) A Posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws. SIAM Journal on Numerical Analysis (SINUM), 53 (3). pp. 1280-1303. ISSN 0036-1429 doi: https://doi.org/10.1137/140970999

Giesselmann, J. and Pryer, T. (2014) On aposteriori error analysis of dG schemes approximating hyperbolic conservation laws. In: Fuhrmann, J., Ohlberger, M. and Rohde, C. (eds.) Finite volumes for complex applications VII-methods and theoretical aspects: FVCA 7, Berlin, June 2014. Springer proceedings in mathematics and statistics, 77. Springer International, Cham, Switzerland, pp. 313-321. ISBN 9783319056838 doi: https://doi.org/10.1007/978-3-319-05684-5_30

Pryer, T. (2014) Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective. Electronic Transactions on Numerical Analysis, 41. pp. 328-349. ISSN 1068-9613

Giesselmann, J., Makridakis, C. and Pryer, T. (2014) Energy consistent DG methods for the Navier-Stokes-Korteweg system. Mathematics of Computation, 83. pp. 2071-2099. ISSN 1088-6842

Makridakis, C., Giesselmann, J. and Pryer, T. (2014) Energy consistent discontinuous Galerkin methods for the Navier–Stokes–Korteweg system. Mathematics of Computation, 83 (289). pp. 2071-2099. ISSN 1088-6842 doi: https://doi.org/10.1090/S0025-5718-2014-02792-0

Lakkis, O. and Pryer, T. (2013) A finite element method for nonlinear elliptic problems. SIAM Journal on Scientific Computing, 35 (4). A2025-A2045. ISSN 1095-7197 doi: https://doi.org/10.1137/120887655

Lakkis, O. and Pryer, T. (2012) Gradient recovery in adaptive finite-element methods for parabolic problems. IMA Journal of Numerical Analysis, 32 (1). pp. 246-278. ISSN 1464-3642 doi: https://doi.org/10.1093/imanum/drq019

Lakkis, O. and Pryer, T. (2011) A finite element method for second order nonvariational elliptic problems. SIAM Journal on Scientific Computing, 33 (2). pp. 786-801. ISSN 1095-7197 doi: https://doi.org/10.1137/100787672

This list was generated on Thu Dec 26 16:41:45 2024 UTC.

Page navigation