Accessibility navigation


Rheology and the breadmaking process

Dobraszczyk, B.J. and Morgenstern, M. (2003) Rheology and the breadmaking process. Journal of Cereal Science, 38 (3). pp. 229-245. ISSN 0733-5210

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/s0733-5210(03)00059-6

Abstract/Summary

The applications of rheology to the main processes encountered during breadmaking (mixing, sheeting, fermentation and baking) are reviewed. The most commonly used rheological test methods and their relationships to product functionality are reviewed. It is shown that the most commonly used method for rheological testing of doughs, shear oscillation dynamic rheology, is generally used under deformation conditions inappropriate for breadmaking and shows little relationship with end-use performance. The frequency range used in conventional shear oscillation tests is limited to the plateau region, which is insensitive to changes in the HMW glutenin polymers thought to be responsible for variations in baking quality. The appropriate deformation conditions can be accessed either by long-time creep or relaxation measurements, or by large deformation extensional measurements at low strain rates and elevated temperatures. Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that the dynamic shear plateau modulus is essentially independent of variations in MW of glutens amongst wheat varieties of varying baking performance and also that it is not the size of the soluble glutenin polymers, but the secondary structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. Extensional strain hardening has been shown to be a sensitive indicator of entanglements and long-chain branching in HMW polymers, and is well related to baking performance of bread doughs. The Considere failure criterion for instability in extension of polymers defines a region below which bubble walls become unstable, and predicts that when strain hardening falls below a value of around 1, bubble walls are no longer stable and coalesce rapidly, resulting in loss of gas retention and lower volume and texture. Strain hardening in doughs has been shown to reach this value at increasingly higher temperatures for better breadmaking varieties and is directly related to bubble stability and baking performance. (C) 2003 Elsevier Ltd. All rights reserved.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences
ID Code:13460
Uncontrolled Keywords:rheology, mixing, sheeting, fermentation, baking, strain hardening, gluten polymers, entanglements, long-chain branching, WHEAT-FLOUR DOUGHS, BUBBLE INFLATION TECHNIQUE, STRESS-RELAXATION, POWER-CONSUMPTION, BREAD-MAKING, DURUM-WHEAT, DEFORMATION MEASUREMENTS, VISCOELASTIC PROPERTIES, MIXING CHARACTERISTICS, EXTENSIONAL VISCOSITY

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation