Accessibility navigation


The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant

Allen-Vercoe, E. and Woodward, M. J. (1999) The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant. Journal of Medical Microbiology, 48 (8). pp. 771-780. ISSN 0022-2615

Full text not archived in this repository.

Abstract/Summary

To gain an understanding of the role of fimbriae and flagella in the adherence and colonisation of Salmonella enterica serotype Enteritidis in chickens, an in-vitro gut adherence assay was developed and used to assess the adherence of a wild-type Enteritidis strain and isogenic non-fimbriate and non-flagellate mutant strains. Enteritidis strain S1400/94, a clinical isolate virulent in chickens, was shown to possess genes which encoded type 1, SEF14, SEF17, plasmid-encoded and long polar fimbriae. Mutant strains unable to elaborate these fimbriae were created by allelic exchange. Each fimbrial operon was inactivated by the insertion of an antibiotic resistance gene cassette. In addition, fliC, motAB and cheA loci, which encode the major subunit of the flagellum, the energy-translation system for motility and one of the chemotaxis signalling proteins, respectively, were similarly inactivated. Non-flagellate mutant strains were significantly less adherent than the wild-type strain, whereas mutant strains defective for the elaboration of any of the types of fimbriae adhered as well as the wild-type strain. A flagellate but non-motile (paralysed) mutant strain and a smooth-swimming chemotaxis-deficient mutant strain were shown to be less adherent than the wild-type strain, but that observation depended on the assay conditions used.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Microbial Sciences Research Group
ID Code:29983

Centaur Editors: Update this record

Page navigation