Accessibility navigation


Effect of a 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in the pig

Delsol, A. A., Woodward, M. J. and Roe, J. M. (2004) Effect of a 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in the pig. Journal of Antimicrobial Chemotherapy, 53 (2). pp. 396-398. ISSN 0305-7453

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1093/jac/dkh038

Abstract/Summary

Objectives: There are concerns that the use of enrofloxacin in livestock production may contribute to the development of fluoroquinolone resistance in zoonotic bacteria. The objective of our study was to investigate the effect of a single 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in a pig model. Results: Our results showed that a single treatment failed to eradicate S. Typhimurium DT104, which continued to be isolated up to 35 days after treatment. We also provide evidence that treatment positively selects for S. Typhimurium DT104 strains that are already nalidixic acid resistant (gyrA Asn-87) or cyclohexane resistant, the latter being indicative of an up-regulated efflux pump. Emergence of fluoroquinolone resistance was not detected during treatment or post-treatment in any of the Salmonella strains monitored. However, the effect of enrofloxacin on the nalidixic acid-resistant and cyclohexane-resistant S. Typhimurium DT104 outlasted the current withdrawal time of 10 days for Baytril (commercial veterinary formulation of enrofloxacin). Conclusions: In conclusion, our study has provided direct evidence that enrofloxacin-treated pigs could be entering abattoirs with higher numbers of quinolone-resistant zoonotic bacteria than untreated pigs, increasing the risk of these entering the food chain.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Microbial Sciences Research Group
ID Code:30051
Publisher:Oxford University Press

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation