Accessibility navigation


Mutant prevention concentrations of ciprofloxacin and enrofloxacin for Salmonella enterica

Randall, L. P., Cooles, S. W., Piddock, L. J. V. and Woodward, M. J. (2004) Mutant prevention concentrations of ciprofloxacin and enrofloxacin for Salmonella enterica. Journal of Antimicrobial Chemotherapy, 54 (3). pp. 688-691. ISSN 0305-7453

Full text not archived in this repository.

To link to this article DOI: 10.1093/jac/dkh360

Abstract/Summary

Objectives: To determine the mutant prevention concentrations (MPCs) of ciprofloxacin and enrofloxacin against four strains of Salmonella enterica serovar Enteritidis and four strains of S. Typhimurium including one fully susceptible, one multiply resistant (MAR), one GyrA mutant and one GyrA/MAR mutant. Further, to examine mutants arising after exposure to sub-MPC concentrations of the antibiotics for susceptibility to ciprofloxacin and enrofloxacin, and cyclohexane tolerance. Methods: MICs were determined using the agar dilution method of the BSAC. The MPC was recorded as the lowest concentration of antibiotic to inhibit growth from an inoculum of 10(10) cfu. Results: The MPCs and resulting MPC/MIC ratios of enrofloxacin were generally two- to four-fold higher than for ciprofloxacin. At 24 h for both antibiotics, MPCs were lowest for the fully susceptible strains (0.25-0.5 mg/L), similar for the MAR (1-4 mg/L) and GyrA (2-4 mg/L) mutants and highest for the GyrA/MAR mutants (1-8 mg/L). MPC/MIC ratios at 24 h were 2-16 for all strains except those for the MAR strains without mutation in gyrA where the ratios were 8-64. Conclusions: The ability to eradicate Salmonella in vivo depends on many factors such as antibiotic susceptibility of the strain, dose and route of administration. It is suggested that these MPC values will be useful when considering dosing strategies. In view of the high MPC/MIC ratio, MAR strains with wild-type gyrA, although susceptible to ciprofloxacin (MICs 0.06-0.13 mg/L), may give rise to treatment failures.

Item Type:Article
Refereed:Yes
Divisions:No Reading authors. Back catalogue items
Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Microbial Sciences Research Group
ID Code:30060
Publisher:Oxford University Press

Centaur Editors: Update this record

Page navigation