Accessibility navigation


The reversibility of sea level rise

Downloads

Downloads per month over past year

Bouttes, N., Gregory, J. M. and Lowe, J. A. (2013) The reversibility of sea level rise. Journal of Climate, 26 (8). pp. 2502-2513. ISSN 1520-0442

[img]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.

1791Kb

To link to this article DOI: 10.1175/JCLI-D-12-00285.1

Abstract/Summary

During the last century, global climate has been warming, and projections indicate that such a warming is likely to continue over coming decades. Most of the extra heat is stored in the ocean, resulting in thermal expansion of seawater and global mean sea level rise. Previous studies have shown that after CO2 emissions cease or CO2 concentration is stabilized, global mean surface air temperature stabilizes or decreases slowly, but sea level continues to rise. Using idealized CO2 scenario simulations with a hierarchy of models including an AOGCM and a step-response model, the authors show how the evolution of thermal expansion can be interpreted in terms of the climate energy balance and the vertical profile of ocean warming. Whereas surface temperature depends on cumulative CO2 emissions, sea level rise due to thermal expansion depends on the time profile of emissions. Sea level rise is smaller for later emissions, implying that targets to limit sea level rise would need to refer to the rate of emissions, not only to the time integral. Thermal expansion is in principle reversible, but to halt or reverse it quickly requires the radiative forcing to be reduced substantially, which is possible on centennial time scales only by geoengineering. If it could be done, the results indicate that heat would leave the ocean more readily than it entered, but even if thermal expansion were returned to zero, the geographical pattern of sea level would be altered. Therefore, despite any aggressive CO2 mitigation, regional sea level change is inevitable.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical and Physical Sciences > NCAS
Faculty of Science > School of Mathematical and Physical Sciences > Department of Meteorology
ID Code:34191
Publisher:American Meteorological Society

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation