Accessibility navigation


Comparison of D-region Doppler drift winds measured by the SuperDARN Finland HF radar over an annual cycle using the Kiruna VHF meteor radar

Arnold, N. E., Cook, P. A., Robinson, T. R., Lester, M., Chapman, P. J. and Mitchell, N. (2003) Comparison of D-region Doppler drift winds measured by the SuperDARN Finland HF radar over an annual cycle using the Kiruna VHF meteor radar. Annales Geophysicae, 21 (10). pp. 2073-2082. ISSN 0992-7689

[img]
Preview
Text - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

403Kb

To link to this article DOI: 10.5194/angeo-21-2073-2003

Abstract/Summary

The SuperDARN chain of oblique HF radars has provided an opportunity to generate a unique climatology of horizontal winds near the mesopause at a number of high latitude locations, via the Doppler shifted echoes from sources of ionisation in the D-region. Ablating meteor trails form the bulk of these targets, but other phenomena also contribute to the observations. Due to the poor vertical resolution of the radars, care must be taken to reduce possible biases from sporadic-E layers and Polar Mesospheric Summer echoes that can affect the effective altitude of the geophysical parameters being observed. Second, there is strong theoretical and observational evidence to suggest that the radars are picking up echoes from the backward looking direction that will tend to reduce the measured wind strengths. The effect is strongly frequency dependent, resulting in a 20% reduction at 12 MHz and a 50% reduction at 10 MHz. A comparison of the climatologies observed by the Super-DARN Finland radar between September 1999 and September 2000 and that obtained from the adjacent VHF meteor radar located at Kiruna is also presented. The agreement between the two instruments was very good. Extending the analysis to the SuperDARN Iceland East radar indicated that the principles outlined above could be applied successfully to the rest of the SuperDARN network.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical and Physical Sciences > NCAS
Faculty of Science > School of Mathematical and Physical Sciences > Department of Meteorology
ID Code:34351
Publisher:Copernicus Publications

Download Statistics for this item.

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation