Accessibility navigation


Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall

Dong, B. ORCID: https://orcid.org/0000-0003-0809-7911 and Sutton, R. ORCID: https://orcid.org/0000-0001-8345-8583 (2015) Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nature Climate Change, 5 (8). pp. 757-760. ISSN 1758-678X

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

670kB
[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1038/nclimate2664

Abstract/Summary

Sahelian summer rainfall, controlled by the West African monsoon, exhibited large-amplitude multidecadal variability during the twentieth century. Particularly important was the severe drought of the 1970s and 1980s, which had widespread impacts1–6. Research into the causes of this drought has identified anthropogenic aerosol forcing3,4,7 and changes in sea surface temperatures (SSTs; refs 1,2,6,8–11) as the most important drivers. Since the 1980s, there has been some recovery of Sahel rainfall amounts2–6,11–14, although not to the pre-drought levels of the 1940s and 1950s. Here we report on experiments with the atmospheric component of a state-of-the-art global climate model to identify the causes of this recovery. Our results suggest that the direct influence of higher levels of greenhouse gases in the atmosphere was the main cause, with an additional role for changes in anthropogenic aerosol precursor emissions. We find that recent changes in SSTs, although substantial, did not have a significant impact on the recovery. The simulated response to anthropogenic greenhouse-gas and aerosol forcing is consistent with a multivariate fingerprint of the observed recovery, raising confidence in our findings. Although robust predictions are not yet possible, our results suggest that the recent recovery in Sahel rainfall amounts is most likely to be sustained or amplified in the near term.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:40372
Publisher:Nature Publishing Group

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation