Accessibility navigation


Control of nanomaterial self-assembly in ultrasonically levitated droplets

Seddon, A. M., Richardson, S. J., Rastogi, K., Plivelic, T. S., Squires, A. M. and Pfrang, C. (2016) Control of nanomaterial self-assembly in ultrasonically levitated droplets. Journal of Physical Chemistry Letters, 7 (7). pp. 1341-1345. ISSN 1948-7185

[img]
Preview
Text (Open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.) - Published Version
· Please see our End User Agreement before downloading.

3MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/acs.jpclett.6b00449

Abstract/Summary

We demonstrate that acoustic trapping can be used to levitate and manipulate droplets of soft matter, in particular, lyotropic mesophases formed from selfassembly of different surfactants and lipids, which can be analyzed in a contact-less manner by X-ray scattering in a controlled gas-phase environment. On the macroscopic length scale, the dimensions and the orientation of the particle are shaped by the ultrasonic field, while on the microscopic length scale the nanostructure can be controlled by varying the humidity of the atmosphere around the droplet. We demonstrate levitation and in situ phase transitions of micellar, hexagonal, bicontinuous cubic, and lamellar phases. The technique opens up a wide range of new experimental approaches of fundamental importance for environmental, biological, and chemical research.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Chemical Analysis Facility (CAF)
Faculty of Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
ID Code:62115
Publisher:American Chemical Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation