Accessibility navigation


Directed motor-auditory EEG connectivity is modulated by music tempo

Nicolaou, N., Malik, A., Daly, I., Weaver, J., Hwang, F., Kirke, A., Roesch, E. B., Williams, D., Miranda, E. R. and Nasuto, S. J. (2017) Directed motor-auditory EEG connectivity is modulated by music tempo. Frontiers in Human Neuroscience, 11. 502. ISSN 1662-5161

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

5MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.3389/fnhum.2017.00502

Abstract/Summary

Beat perception is fundamental to how we experience music, and yet the mechanism behind this spontaneous building of the internal beat representation is largely unknown. Existing findings support links between the tempo (speed) of the beat and enhancement of electroencephalogram (EEG) activity at tempo-related frequencies, but there are no studies looking at how tempo may affect the underlying long-range interactions between EEG activity at different electrodes. The present study investigates these long-range interactions using EEG activity recorded from 21 volunteers listening to music stimuli played at 4 different tempi (50, 100, 150 and 200 beats per minute). The music stimuli consisted of piano excerpts designed to convey the emotion of “peacefulness”. Noise stimuli with an identical acoustic content to the music excerpts were also presented for comparison purposes. The brain activity interactions were characterized with the imaginary part of coherence (iCOH) in the frequency range 1.5–18 Hz (δ, θ, α and lower β) between all pairs of EEG electrodes for the four tempi and the music/noise conditions, as well as a baseline resting state (RS) condition obtained at the start of the experimental task. Our findings can be summarized as follows: (a) there was an ongoing long-range interaction in the RS engaging fronto-posterior areas; (b) this interaction was maintained in both music and noise, but its strength and directionality were modulated as a result of acoustic stimulation; (c) the topological patterns of iCOH were similar for music, noise and RS, however statistically significant differences in strength and direction of iCOH were identified; and (d) tempo had an effect on the direction and strength of motor-auditory interactions. Our findings are in line with existing literature and illustrate a part of the mechanism by which musical stimuli with different tempi can entrain changes in cortical activity.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Centre for Integrative Neuroscience and Neurodynamics (CINN)
Faculty of Life Sciences > School of Biological Sciences > Biomedical Sciences
Faculty of Life Sciences > School of Psychology and Clinical Language Sciences > Department of Psychology
ID Code:73252
Uncontrolled Keywords:coherence analysis, imaginary coherency, electroencephalography (EEG), music tempo, brain connectivity analysis
Publisher:Frontiers

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation