Accessibility navigation


Intraseasonal variability of air-sea fluxes over the Bay of Bengal during the southwest monsoon

Sanchez-Franks, A., Kent, E. C., Matthews, A. J., Webber, B. G. M., Peatman, S. C. and Vinayachandran, P. N. (2018) Intraseasonal variability of air-sea fluxes over the Bay of Bengal during the southwest monsoon. Journal of Climate, 31 (17). pp. 7087-7109. ISSN 1520-0442

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

3MB
[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

2MB
[img]
Preview
Text - Supplemental Material
· Please see our End User Agreement before downloading.

568kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/JCLI-D-17-0652.1

Abstract/Summary

In the Bay of Bengal (BoB), surface heat fluxes play a key role in monsoon dynamics and prediction. The accurate representation of large-scale surface fluxes is dependent on the quality of gridded reanalysis products. Meteorological and surface flux variables from five reanalysis products are compared and evaluated against in situ data from the RAMA moored array in the BoB. The reanalysis products: ERA-Interim (ERA-I), TropFlux, MERRA-2, JRA-55 and CFSR are assessed for their characterisation of air-sea fluxes during the southwest monsoon season (JJAS). ERA-I captured radiative fluxes best while TropFlux captured turbulent and net heat fluxes (Qnet) best, and both products outperformed JRA-55, MERRA-2 and CFSR, showing highest correlations and smallest biases when compared to the in situ data. In all five products, the largest errors were in shortwave radiation (QSW) and latent heat flux (QLH), with non-negligible biases up to ∼75 W m−2. The QSW and QLH are the largest drivers of the observed Qnet variability, thus highlighting the importance of the results from the buoy comparison. There are also spatially coherent differences in the mean basin-wide fields of surface flux variables from the reanalysis products, indicating that the biases at the buoy position are not localized. Biases of this magnitude have severe implications on reanalysis products ability to capture the variability of monsoon processes. Hence, the representation of intraseasonal variability was investigated through the boreal summer intraseasonal oscillation and we found that TropFlux and ERA-I perform best at capturing intraseasonal climate variability during the southwest monsoon season.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > NCAS
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:77492
Publisher:American Meteorological Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation