Accessibility navigation


Drivers of the severity of the extreme hot summer of 2015 in western China

Chen, W. and Dong, B. (2018) Drivers of the severity of the extreme hot summer of 2015 in western China. Journal of Meteorological Research, 32 (6). pp. 1002-1010. ISSN 2198-0934

[img] Text - Accepted Version
· Restricted to Repository staff only until 25 December 2019.

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1007/s13351-018-8004-y

Abstract/Summary

Western China experienced an extreme hot summer in 2015, breaking a number of temperature records. The summer mean surface air temperature (SAT) anomaly was twice the interannual variability. The hottest daytime temperature (TXx) and warmest night-time temperature (TNx) were the highest in China since 1964. This extreme hot summer occurred in the context of steadily increasing temperatures in recent decades. We carried out a set of experiments to evaluate the extent to which the changes in sea surface temperature (SST)/sea ice extent (SIE) and anthropogenic forcing drove the severity of the extreme summer of 2015 in western China. Our results indicate that about 65–72% of the observed changes in the seasonal mean SAT and the daily maximum (Tmax) and daily minimum (Tmin) temperatures over western China resulted from changes in boundary forcings, including the SST/SIE and anthropogenic forcing. For the relative role of individual forcing, the direct impact of changes in anthropogenic forcing explain about 42% of the SAT warming and 60% (40%) of the increase in TNx and Tmin (TXx and Tmax) in the model response. The changes in SST/SIE contributed to the remaining surface warming and the increase in hot extremes, which are mainly the result of changes in the SST over the Pacific Ocean, where a super El Niño event occurred. Our study indicates a prominent role for the direct impact of anthropogenic forcing in the severity of the extreme hot summer in western China in 2015, although the changes in SST/SIE, as well as the internal variability of the atmosphere, also made a contribution.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > NCAS
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:79536
Publisher:Springer

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation