Accessibility navigation


The asymmetric eddy-background flow interaction in the North Pacific storm track

Zhao, Y.-B., Liang, X. S., Guan, Z. and Hodges, K. I. (2019) The asymmetric eddy-background flow interaction in the North Pacific storm track. Quarterly Journal of the Royal Meteorological Society, 145 (719). pp. 575-596. ISSN 1477-870X

[img] Text - Accepted Version
· Restricted to Repository staff only until 5 February 2020.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/qj.3453

Abstract/Summary

Using a recently developed methodology, namely, the multiscale window transform (MWT), and the MWT-based theory of canonical transfer and localized multiscale energetics analysis, we investigate in an eddy-following way the nonlinear eddy-background flow interaction in the North Pacific storm track, based on the ERA40 reanalysis data from ECWMF. It is found that more than 50% of the storms occur on the northern flank of the jet stream, about 40% are around the jet center, and very few (less than 5%) happen on the southern flank. For storms near or to the north of the jet center, their interaction with the background flow is asymmetric in latitude. In higher latitudes, strong downscale canonical available potential energy transfer happens, especially in the middle troposphere, which reduces the background baroclinicity and decelerates the jet; in lower latitudes, upscale canonical kinetic energy transfer intensifies at the jet center, accelerating the jet and enhancing the middle-level baroclinicity. The resultant effect is that the jet strengthens but narrows, leading to an anomalous dipolar pattern in the fields of background wind and baroclinicity. For the storms on the southern side of the jet, the baroclinic canonical transfer is rather weak. On average, the local interaction begins from about 3 days before a storm arrives at the site of observation, achieves its maximum as the storm arrives, and then weakens.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > NCAS
Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:80948
Publisher:Royal Meteorological Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation