Accessibility navigation


The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism

Uzefovsky, F., Bethlehem, R. A. I., Shamay-Tsoory, S., Ruigrok, A., Holt, R., Spencer, M., Chura, L., Warrier, V., Chakrabarti, B., Bullmore, E., Suckling, J., Floris, D. and Baron-Cohen, S. (2019) The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism. Molecular Autism, 10 (1). 12. ISSN 2040-2392

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

4MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1186/s13229-019-0258-4

Abstract/Summary

Background Autism is a highly varied and heritable neurodevelopmental condition, and common variants explain approximately 50% of the genetic variance of autism. One of the genes implicated in autism is the oxytocin receptor (OXTR). The current study combined genetic and brain imaging (fMRI) data to examine the moderating effect of genotype on the association between diagnosis and brain activity in response to a test of cognitive empathy. Methods Participants were adolescents (mean age = 14.7 ± 1.7) who were genotyped for single nucleotide polymorphisms (SNPs) within the OXTR and underwent functional brain imaging while completing the adolescent version of the ‘Reading the Mind in the Eyes’ Test (Eyes Test). Results Two (rs2254298, rs53576) of the five OXTR SNPs examined were significantly associated with brain activity during the Eyes Test, and three of the SNPs (rs2254298, rs53576, rs2268491) interacted with diagnostic status to predict brain activity. All of the effects localized to the right supramarginal gyrus (rSMG) and an overlap analysis revealed a large overlap of the effects. An exploratory analysis showed that activity within an anatomically defined rSMG and genotype can predict diagnostic status with reasonable accuracy. Conclusions This is one of the first studies to investigate OXTR and brain function in autism. The findings suggest a neurogenetic mechanism by which OXTR-dependent activity within the rSMG is related to the aetiology of autism.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Centre for Integrative Neuroscience and Neurodynamics (CINN)
Interdisciplinary centres and themes > ASD (Autism Spectrum Disorders) Research Network
Faculty of Life Sciences > School of Psychology and Clinical Language Sciences > Department of Psychology
Faculty of Life Sciences > School of Psychology and Clinical Language Sciences > Neuroscience
Faculty of Life Sciences > School of Psychology and Clinical Language Sciences > Psychopathology and Affective Neuroscience
ID Code:82808
Publisher:BioMed Central

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation