Accessibility navigation


Pressure drag for shallow cumulus clouds: from thermals to the cloud ensemble

Gu, J.-F. ORCID: https://orcid.org/0000-0002-7752-4553, Plant, B. ORCID: https://orcid.org/0000-0001-8808-0022, Holloway, C. E. ORCID: https://orcid.org/0000-0001-9903-8989 and Muetzelfeldt, M. R. (2020) Pressure drag for shallow cumulus clouds: from thermals to the cloud ensemble. Geophysical Research Letters, 47 (22). e2020GL090460. ISSN 0094-8276

[img]
Preview
Text (Open access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

2MB
[img] Text - Accepted Version
· Restricted to Repository staff only

3MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1029/2020GL090460

Abstract/Summary

This study takes the first step to bridge the gap between the pressure drag of a shallow cloud ensemble and that of an individual cloud composed of rising thermals. It is found that the pressure drag for a cloud ensemble is primarily controlled by the dynamical component. The dominance of dynamical pressure drag and its increased magnitude with height are independent of cloud lifetime and are common features of individual clouds except that the total drag of a single cloud over life cycle presents vertical oscillations. These oscillations are associated with successive rising thermals but are further complicated by the evaporation-driven downdrafts outside the cloud. The horizontal vorticity associated with the vortical structure is amplified as the thermals rise to higher altitudes due to continuous baroclinic vorticity generation. This leads to the increased magnitude of local minima of dynamical pressure perturbation with height and consequently to increased dynamical pressure drag.

Item Type:Article
Refereed:Yes
Divisions:Faculty of Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:93846
Publisher:American Geophysical Union

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation