Accessibility navigation


Evolving patterns of sterodynamic sea-level rise under mitigation scenarios and insights from linear system theory

Wu, Q., Zhang, X., Church, J. A., Hu, J. and Gregory, J. (2021) Evolving patterns of sterodynamic sea-level rise under mitigation scenarios and insights from linear system theory. Climate Dynamics. ISSN 0930-7575 (In Press)

[img] Text - Accepted Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

5MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Abstract/Summary

Long-term behaviour of sea-level rise is an important factor in assessing the impact of climate change on multi-century timescales. Under the stabilisation scenario RCP4.5, Sterodynamic Sea-Level (SdynSL) and ocean density change in the CMIP5 models exhibit distinct patterns over the periods before and after Radiative Forcing (RF) stabilisation (2000–2070 vs. 2100–2300). The stabilisation pattern is more geographically uniform and involves deeper penetration of density change than the transient pattern. In RCP2.6, 4.5 and 8.5, the spatiotemporal evolution of SdynSL change can be approximated as a linear combination of the transient and stabilisation patterns. Specifically, SdynSL change is dominated by the transient pattern when RF increases rapidly, but it is increasingly affected by the stabilisation pattern once RF starts to stabilise. The growth of the stabilisation pattern could persist for centuries after RF ceases increasing. The evolving patterns of SdynSL change can also be approximated as a linear system's responses (characterised by its Green’s function) to time-dependent boundary conditions. By examining SdynSL change simulated in linear system models with different estimates of Green's functions, we find that both the climatological ocean circulation and the ocean's dynamical response to RF play a role in shaping the patterns of SdynSL change. The linear system model is more accurate than the univariate pattern scaling in emulating the CMIP5 SdynSL change beyond 2100. The emergence of the stabilisation pattern leads to a 1–10% decrease in the ocean's expansion efficiency of heat over 2000–2300 in RCP2.6 and 4.5.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:96756
Publisher:Springer

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation