Amemiya, A., and K. Sato, 2016: A new gravity wave parameterization including three-dimensional propagation. J. Meteor. Soc. Japan, 94, 237–256.
Beljaars, A. C. M., A. R. Brown, and N. Wood, 2004: A new parametrization of turbulent orographic form drag. Quart. J. Roy. Meteor. Soc., 130, 1327–1347.
Broutman, D., J. W. Rottman, and S. D. Eckermann, 2002: Maslov’s method for stationary hydrostatic mountain waves. Quart. J. Roy. Meteor. Soc., 128, 1159–1171.
Broutman, D., J. W. Rottman, and S. D. Eckermann, 2003: A simplified Fourier method for nonhydrostatic mountain waves. J. Atmos. Sci., 60, 2686–2696.
Davis, C. A., D. A. Ahijevych, W. Wang, and W. C. Skamarock, 2016: Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models. Mon. Wea. Rev., 144, 4141–4160.
Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59, 186–201.
Eckermann, S. D., J. Ma, and D. Broutman, 2015: Effects of horizontal geometrical spreading on the parameterization of orographic gravity wave drag. Part I: Numerical transform solutions. J. Atmos. Sci., 72, 2330–2347.
Ehard, B., and Coauthors, 2017: Vertical propagation of large-amplitude mountain waves in the vicinity of the polar night jet. J. Geophys. Res. Atmos., 122, 1423–1436.
Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003.
Grubišić, V., and P. K. Smolarkiewicz, 1997: The effect of critical levels on 3D orographic flows: Linear regime. J. Atmos. Sci., 54, 1943–1960.
Guarino, M.‐V., and M. A. C. Teixeira, 2017: Non‐hydrostatic effects on mountain wave breaking in directional shear flows. Quart. J. Roy. Meteor. Soc., 143, 3291–3297.
Kim, Y.‐J., and A. Arakawa, 1995: Improvement of orographic gravity wave parameterization using a mesoscale gravity wave model. J. Atmos. Sci., 52, 1875–1902.
Kim, Y. -J., and J. D. Doyle, 2005: Extension of an orographic-drag parameterization scheme to incorporate orographic anisotropy and flow blocking. Quart. J. Roy. Meteor. Soc., 131, 1893–1921.
Kim, Y. -J., S. D. Eckermann, and H. Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.– Ocean, 41, 65–98.
Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430–444.
Lott, F., and M. Miller, 1997: A new sub-grid orographic drag parameterization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101–127.
Marks, C. J., and S. D. Eckermann, 1995: A three-dimensional nonhydrostatic ray-tracing model for gravity waves: Formulation and preliminary results for the Middle atmosphere. J. Atmos. Sci., 52, 1959–1984.
McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci, 44, 1775–1800.
Miranda, P. M. A., and I. N. James, 1992: Non-linear three-dimensional effects on the wave drag: Splitting flow and breaking waves. Quart. J. Roy. Meteor. Soc., 118, 1057–1081.
Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039.
Phillips, D. S., 1984: Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountains. J. Atmos. Sci., 41, 1073–1084.
Plougonven R., A. de la Cámara, A. Hertzog., and F. Lott, 2020: How does knowledge of atmospheric gravity waves guide their parameterizations? Quart. J. Roy. Meteor. Soc., 146, 1529–1543.
Pulido, M., and C. Rodas, 2011: A higher-order ray approximation applied to orographic waves: Gaussian beam approximation. J. Atmos. Sci., 68, 46–60.
Scinocca, J. F., and N. A. McFarlane, 2000: The parametrization of drag induced by stratified flow over anisotropic orography. Quart. J. Roy. Meteor. Soc., 126, 2353–2393.
Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 41–56.
Shutts, G., 1995: Gravity-wave drag parameterization over complex terrain: The effect of critical-level absorption in directional wind-shear. Quart. J. Roy. Meteor. Soc., 121, 1005–1021.
Shutts, G. J., 1998: Stationary gravity-wave structure in flows with directional wind shear. Quart. J. Roy. Meteor. Soc., 124, 1421–1442.
Skamarock, W., J. B. Klemp, M. G. Duda, and coauthors, 2012: A multiscale nonhydrostatic atmospheric model using centroidal voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105.
Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, 21, 87–230.
Smith, R. B., 1980. Linear theory of stratified flow past an isolated mountain. Tellus, 32, 348–364.
Smith, R. B., 1985: On severe downslope winds. J. Atmos. Sci., 42, 2597–2603.
Song, I.-S., and H.-Y. Chun, 2008: A Lagrangian spectral parameterization of gravity wave drag induced by cumulus convection. J. Atmos. Sci., 65, 1204–1224.
Teixeira, M. A. C., and P. M. A. Miranda, 2006: A linear model of gravity wave drag for hydrostatic sheared flow over elliptical mountains. Quart. J. Roy. Meteor. Soc., 132, 2439–2458.
Teixeira, M. A. C., and P. M. A. Miranda, 2009: On the momentum fluxes associated with mountain waves in directionally sheared flows. J. Atmos. Sci., 66, 3419–3433.
Teixeira, M. A. C., and C. L. Yu, 2014: The gravity wave momentum flux in hydrostatic flow with directional shear over elliptical mountains. Eur. J. Mech. Fluids, 47B, 16–31.
Teixeira, M. A. C., P. M. A. Miranda, and R. M. Cardoso, 2008: Asymptotic gravity wave drag expression for non-hydrostatic rotating flow over a ridge. Quart. J. Roy. Meteor. Soc., 134, 271–276.
Teixeira, M. A. C., P. M. A., Miranda, and M. A. Valente, 2004. An analytical model of mountain wave drag for wind profiles with shear and curvature. J. Atmos. Sci., 61, 1040–1054.
Turner, H. V., M. A. C. Teixeira, J. Methven, and S. B. Vosper, 2019: Sensitivity of the surface orographic gravity wave drag to vertical wind shear over Antarctica. Quart. J. Roy. Meteor. Soc., 145, 164-178.
Wurtele, M. G., R. D. Sharman, and A. Datta, 1996: Atmospheric lee waves. Ann. Rev. Fluid Mech., 28, 429–476.
Xu, X., Y. Wang, and M. Xue, 2012: Momentum flux and flux divergence of gravity waves in directional shear flows over three-dimensional mountains. J. Atmos. Sci., 69, 3733–3744.
Xu, X., J. Song, Y. Wang, and M. Xue, 2017a: Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using Gaussian Beam Approximation. J. Atmos. Sci., 74, 1783–1798.
Xu, X., S. Shu, and Y. Wang, 2017b: Another look on the structure of mountain waves: A spectral perspective. Atmos. Res., 191, 156–163.
Xu, X., Y. Tang, Y. Wang, and M. Xue, 2018: Directional absorption of mountain waves and its influence on the wave momentum transport in the Northern Hemisphere. J. Geophy. Res. Atmos., 123, 2640-2654.
Xu, X., M. Xue, M. A. C. Teixeira, J. Tang, and Y. Wang, 2019: Parameterization of directional absorption of orographic gravity waves and its impact on the atmospheric general circulation simulated by the Weather Research and Forecasting model. J. Atmos. Sci., 76, 3435−3453.
Xu, X., M. A. C. Teixeira, M. Xue, Y. Lu, and J. Tang, 2020: Impacts of wind profile shear and curvature on the parameterized orographic gravity wave stress in the Weather Research and Forecasting model. Q. J. R. Meteorol. Soc., 146, 3086-3100.
Xue, M., and A. J. Thorpe, 1991: A mesoscale numerical model using the nonhydrostatic sigma-coordinate equations: Model experiments with dry mountain flows. Mon. Wea. Rev., 119, 1168−1185.
Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol. Atmos. Phys., 75, 161–193.
Zängl, G., 2003: Orographic gravity waves close to the nonhydrostatic limit of vertical propagation. J. Atmos. Sci., 60, 2045−2063.
Zhang, Y., J. Li, R. Yu, and coauthors, 2019: A layer‐averaged nonhydrostatic dynamical framework on an unstructured mesh for global and regional atmospheric modeling: Model description, baseline evaluation, and sensitivity exploration. J. Adv. Model. Earth Sy., 11, 1685−1714.
Zhou, L., S.-J. Lin, J.-H. Chen, and coauthors, 2019: Toward convective-scale prediction within the next generation global prediction system. Bull. Amer. Meteor. Soc., 100, 1225−1243.