Accessibility navigation


Exploring the characteristics of a vehicle-based temperature dataset for kilometre-scale data assimilation

Bell, Z., Dance, S. L. ORCID: https://orcid.org/0000-0003-1690-3338 and Waller, J. A. (2022) Exploring the characteristics of a vehicle-based temperature dataset for kilometre-scale data assimilation. Meteorological Applications, 29 (3). e2058. ISSN 1469-8080

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

2MB
[img] Text - Accepted Version
· Restricted to Repository staff only

836kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/met.2058

Abstract/Summary

Crowdsourced vehicle-based observations have the potential to improve forecast skill in convection-permitting numerical weather prediction (NWP). The aim of this paper is to explore the characteristics of vehicle-based observations of air temperature in the context of data assimilation. We describe a novel low-precision vehicle-based observation dataset obtained from a Met Office proof-of-concept trial. In this trial, observations of air temperature were obtained from built-in vehicle air-temperature sensors, broadcast to an application on the participant’s smartphone and uploaded, with relevant metadata, to the Met Office servers. We discuss the instrument and representation uncertainties associated with vehicle-based observations and present a new quality-control procedure. It is shown that, for some observations, location metadata may be inaccurate due to unsuitable smartphone application settings. The characteristics of the data that passed quality-control are examined through comparison with United Kingdom variable-resolution model data, roadside weather information station observations, and Met Office integrated data archive system observations. Our results show that the uncertainty associated with vehicle-based observation-minus-model comparisons is likely to be weather-dependent and possibly vehicle-dependent. Despite the low precision of the data, vehicle-based observations of air temperature could be a useful source of spatially-dense and temporally-frequent observations for NWP.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:104199
Publisher:Royal Meteorological Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation