Accessibility navigation


Dissociable roles for the striatal cholinergic system in different flexibility contexts

Williams, B. ORCID: https://orcid.org/0000-0003-3844-3117 and Christakou, A. ORCID: https://orcid.org/0000-0002-4267-3436 (2022) Dissociable roles for the striatal cholinergic system in different flexibility contexts. IBRO Neuroscience Reports, 12. pp. 260-270. ISSN 2667-2421

[img]
Preview
Text (Open access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

1MB
[img] Text - Accepted Version
· Restricted to Repository staff only

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.ibneur.2022.03.007

Abstract/Summary

The production of behavioural flexibility requires the coordination and integration of information from across the brain, by the dorsal striatum. In particular, the striatal cholinergic system is thought to be important for the modulation of striatal activity. Research from animal literature has shown that chemical inactivation of the dorsal striatum leads to impairments in reversal learning. Furthermore, proton magnetic resonance spectroscopy work has shown that the striatal cholinergic system is also importaiknt for reversal learning in humans. Here, we aim to assess whether the state of the dorsal striatal cholinergic system at rest is related to serial reversal learning in humans. We provide preliminary results showing that variability in choline in the dorsal striatum is significantly related to both the number of perseverative and regressive errors that participants make, and their rate of learning from positive and negative prediction errors. These findings, in line with previous work, suggest the resting state of dorsal striatal cholinergic system has important implications for producing flexible behaviour. However, these results also suggest the system may have heterogeneous functionality across different types of tasks measuring behavioural flexibility. These findings provide a starting point for further interrogation into understanding the functional role of the striatal cholinergic system in flexibility.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary Research Centres (IDRCs) > Centre for Integrative Neuroscience and Neurodynamics (CINN)
Life Sciences > School of Psychology and Clinical Language Sciences > Department of Psychology
Life Sciences > School of Psychology and Clinical Language Sciences > Neuroscience
Life Sciences > School of Psychology and Clinical Language Sciences > Psychopathology and Affective Neuroscience
ID Code:104489
Publisher:Elsevier

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation