1. Liu M, Johnston M B, and Snaith H J, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501 (2013) 395-398.
2. Christians J A, Schulz P, Tinkham J S, Schloemer T H, Harvey S P, Tremolet de Villers B J, Sellinger A, Berry J J, and Luther J M, Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nature Energy 3 (2018) 68-74.
3. Hassan Y, Park J, Crawford M, Sadhanala A, Lee J, Sadighian J, Mosconi E, Shivanna R, Radicchi E, Jeong M, Yang C, Choi H, Park S H, Song M H, Angelis F, Wong C, Friend R, Lee B R, and Snaith H, Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591 (2021) 72-77.
4. Jeong J, et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592 (2021) 1-5.
5. Ono L K, Juarez-Perez E J, and Qi Y, Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions. ACS Applied Materials & Interfaces 9 (2017) 30197-30246.
6. Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T-Y, Noh J H, and Seo J, Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567 (2019) 511-515.
7. Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J-P, Bulović V, Buonassisi T, Shin S S, and Bawendi M G, An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy & Environmental Science 12 (2019) 2192-2199.
8. Yoo J J, Seo G, Chua M R, Park T G, Lu Y, Rotermund F, Kim Y-K, Moon C S, Jeon N J, Correa-Baena J-P, Bulović V, Shin S S, Bawendi M G, and Seo J, Efficient perovskite solar cells via improved carrier management. Nature 590 (2021) 587-593.
9. Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J, and Seok S I, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517 (2015) 476-480.
10. Dalpian G, Zhao X-G, Kazmerski L, and Zunger A, Formation and Composition-Dependent Properties of Alloys of Cubic Halide Perovskites. Chemistry of Materials 31 (2019) 2497–2506.
11. Senno M and Tinte S, Mixed formamidinium–methylammonium lead iodide perovskite from first-principles: hydrogen-bonding impact on the electronic properties. Physical Chemistry Chemical Physics 23 (2021) 7376-7385.
12. Grüninger H, Bokdam M, Leupold N, Tinnemans P, Moos R, De Wijs G A, Panzer F, and Kentgens A P M, Microscopic (Dis)order and Dynamics of Cations in Mixed FA/MA Lead Halide Perovskites. Journal of Physical Chemistry C 125 (2021) 1742-1753.
13. Kühne T D, et al., CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics 152 (2020) 194103.
14. VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, and Hutter J, Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Computer Physics Communications 167 (2005) 103-128.
15. Perdew J P, Burke K, and Ernzerhof M, Generalized Gradient Approximation Made Simple. Physical Review Letters 77 (1996) 3865-3868.
16. Grimme S, Antony J, Ehrlich S, and Krieg H, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 132 (2010) 154104.
17. VandeVondele J and Hutter J, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. The Journal of Chemical Physics 127 (2007) 114105.
18. Goedecker S, Teter M, and Hutter J, Separable dual-space Gaussian pseudopotentials. Physical Review B 54 (1996) 1703-1710.
19. Hartwigsen C, Goedecker S, and Hutter J, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Physical Review B 58 (1998) 3641-3662.
20. Krack M, Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theoretical Chemistry Accounts 114 (2005) 145-152.
21. VandeVondele J and Hutter J, An efficient orbital transformation method for electronic structure calculations. The Journal of Chemical Physics 118 (2003) 4365-4369.
22. Weber V, VandeVondele J, Hutter J, and Niklasson A M N, Direct energy functional minimization under orthogonality constraints. The Journal of Chemical Physics 128 (2008) 084113.
23. Menéndez-Proupin E, Grover S, Montero-Alejo A L, Midgley S D, Butler K T, and Grau-Crespo R, Data supporting Mixed-anion mixed-cation perovskite (FAPbI3)0.875(MAPbBr3)0.125: an ab initio molecular dynamics study, Repositorio de datos de investigación de la Universidad de Chile, 2021, https://doi.org/10.34691/FK2/PXNHBG
24. Kresse G and Furthmüller J, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54 (1996) 11169-11186.
25. Menéndez-Proupin E, Palacios P, Wahnón P, and Conesa J C, Self-consistent relativistic band structure of the CH3NH3PbI3 perovskite. Physical Review B 90 (2014) 045207.
26. Kepenekian M, Robles R, Katan C, Sapori D, Pedesseau L, and Even J, Rashba and Dresselhaus Effects in Hybrid Organic–Inorganic Perovskites: From Basics to Devices. ACS Nano 9 (2015) 11557-11567.
27. Blöchl P E, Projector augmented-wave method. Physical Review B 50 (1994) 17953-17979.
28. Kresse G and Joubert D, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59 (1999) 1758-1775.
29. Weller M T, Weber O J, Frost J M, and Walsh A, Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K. The Journal of Physical Chemistry Letters 6 (2015) 3209-3212.
30. Jaffe A, Lin Y, Beavers C M, Voss J, Mao W L, and Karunadasa H I, High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties. ACS Central Science 2 (2016) 201-209.
31. Zhao X-G, Dalpian G M, Wang Z, and Zunger A, Polymorphous nature of cubic halide perovskites. Physical Review B 101 (2020) 155137.
32. Zunger A, Wei S H, Ferreira L G, and Bernard J E, Special quasirandom structures. Physical Review Letters 65 (1990) 353-356.
33. Grau-Crespo R, Hamad S, Catlow C R A, and Leeuw N H d, Symmetry-adapted configurational modelling of fractional site occupancy in solids. Journal of Physics: Condensed Matter 19 (2007) 256201.
34. Momma K and Izumi F, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of applied crystallography 44 (2011) 1272-1276.
35. Cusack N E, The physics of structurally disordered matter: an introduction. 1988, Bristol: Hilger.
36. Montero-Alejo A L, Menéndez-Proupin E, Hidalgo-Rojas D, Palacios P, Wahnón P, and Conesa J C, Modeling of Thermal Effect on the Electronic Properties of Photovoltaic Perovskite CH3NH3PbI3: The Case of Tetragonal Phase. The Journal of Physical Chemistry C 120 (2016) 7976-7986.
37. Ghosh D, Walsh Atkins P, Islam M S, Walker A B, and Eames C, Good Vibrations: Locking of Octahedral Tilting in Mixed-Cation Iodide Perovskites for Solar Cells. ACS Energy Letters 2 (2017) 2424-2429.
38. Brehm M, Thomas M, Gehrke S, and Kirchner B, TRAVIS—A free analyzer for trajectories from molecular simulation. The Journal of Chemical Physics 152 (2020) 164105.
39. Johnston A, Walters G, Saidaminov M I, Huang Z, Bertens K, Jalarvo N, and Sargent E H, Bromine Incorporation and Suppressed Cation Rotation in Mixed-Halide Perovskites. ACS Nano 14 (2020) 15107-15118.
40. Simenas M, Balčiūnas S, Svirskas S, Kinka M, Ptak M, Kalendra V, Gągor A, Szewczyk D, Sieradzki A, Grigalaitis R, Walsh A, Mączka M, and Banys J, Phase Diagram and Cation Dynamics of Mixed MA1-xFAxPbBr3 Hybrid Perovskites. Chemistry of Materials 33 (2021) 5926-5934.
41. Mattoni A, Filippetti A, and Caddeo C, Modeling hybrid perovskites by molecular dynamics. Journal of Physics: Condensed Matter 29 (2016) 043001.
42. Ganguly J, Thermodynamics in Earth and Planetary Sciences. 2008: Springer, Berlin, Heidelberg.
43. Prieto M, Thermodynamics of Solid Solution-Aqueous Solution Systems. Reviews in Mineralogy and Geochemistry 70 (2009) 47-85.
44. Grau-Crespo R, de Leeuw N H, Hamad S, and Waghmare U V, Phase separation and surface segregation in ceria–zirconia solid solutions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467 (2011) 1925-1938.
45. Moran R F, McKay D, Tornstrom P C, Aziz A, Fernandes A, Grau-Crespo R, and Ashbrook S E, Ensemble-Based Modeling of the NMR Spectra of Solid Solutions: Cation Disorder in Y2(Sn,Ti)2O7. Journal of the American Chemical Society 141 (2019) 17838-17846.
46. Jinnouchi R, Karsai F, and Kresse G, On-the-fly machine learning force field generation: Application to melting points. Physical Review B 100 (2019) 014105.
47. Jinnouchi R, Karsai F, Verdi C, Asahi R, and Kresse G, Descriptors representing two-and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials. The Journal of Chemical Physics 152 (2020) 234102.
48. Saliba M, Matsui T, Seo J-Y, Domanski K, Correa-Baena J-P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, and Hagfeldt A, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & environmental science 9 (2016) 1989-1997.
49. Zhang C, Wang Y, Lin X, Wu T, Han Q, Zhang Y, and Han L, Effects of A site doping on the crystallization of perovskite films. Journal of Materials Chemistry A 9 (2021) 1372-1394.
50. Amézaga A, Holmström E, Lizárraga R, Menéndez-Proupin E, Bartolo-Pérez P, and Giannozzi P, Quantitative local environment characterization in amorphous oxides. Physical Review B 81 (2010) 014210.
51. Jesper Jacobsson T, Correa-Baena J-P, Pazoki M, Saliba M, Schenk K, Grätzel M, and Hagfeldt A, Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy & Environmental Science 9 (2016) 1706-1724.
52. Brauer J C, Tsokkou D, Sanchez S, Droseros N, Roose B, Mosconi E, Hua X, Stolterfoht M, Neher D, Steiner U, Angelis F D, Abate A, and Banerji N, Comparing the excited-state properties of a mixed-cation–mixed-halide perovskite to methylammonium lead iodide. The Journal of Chemical Physics 152 (2020) 104703.
53. Amat A, Mosconi E, Ronca E, Quarti C, Umari P, Nazeeruddin M K, Gratzel M, and De Angelis F, Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano letters 14 (2014) 3608-3616.
54. Filip M R, Eperon G E, Snaith H J, and Giustino F, Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature communications 5 (2014) 1-9.