The impact of surface heterogeneity on the diurnal cycle of deep convectionHarvey, N. J. ORCID: https://orcid.org/0000-0003-0973-5794, Daleu, C. L. ORCID: https://orcid.org/0000-0003-2075-4902, Stratton, R. A., Plant, R. S. ORCID: https://orcid.org/0000-0001-8808-0022, Woolnough, S. J. ORCID: https://orcid.org/0000-0003-0500-8514 and Stirling, A. J. (2022) The impact of surface heterogeneity on the diurnal cycle of deep convection. Quarterly Journal of the Royal Meteorological Society, 148 (749). pp. 3509-3527. ISSN 1477-870X
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1002/qj.4371 Abstract/SummaryDespite some recent improvements, there remain major deficiencies in model simulations using parameterised convection in capturing both the phase and amplitude of the daily cycle of precipitation in tropical regions. The difficulties are particularly acute in regions of heterogeneous surface conditions, since the simulations need not only to respond appropriately to the local forcing from surface fluxes but also to capture the interactions with near-surface mesoscale circulations. Here we examine such a situation by means of idealised cloud-resolving simulations of deep convection over a heterogeneous surface, performed using the cloud-resolving simulation model MONC. In these simulations, we show that precipitation forms preferentially over dry and warm patches ("DRY") as compared to wet and cold patches ("WET"), with the peak precipitation rates differing by a factor of approximately 4. The initiation of precipitation occurs approximately 1.5 hours earlier in the DRY patches compared to the WET. Moreover, within the WET and DRY patches there are marked differences in the spatial distribution of the precipitation. These cloud-resolving simulations are then used as a benchmark to assess the behaviour of simulations using parameterised convection, performed using the idealised configuration of the MetUM. The MetUM simulations do produce a response with some qualitative similarities to the cloud-resolving simulations. In particular, although the simulations with parameterised convection initiate precipitation too early they are capable of capturing the relative amounts of daily-mean precipitation in the DRY and WET patches. We propose that the cloud-resolving simulations could be further used to investigate the impact of fully interactive surface schemes and as benchmark simulations to evaluate new parameterisation schemes.
DownloadsDownloads per month over past year
R. Avissar and T. Schmidt. An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer
using large-eddy simulations. Journal of the Atmospheric Sciences, 55:2666–2689, 1998.
F. Baur, C. Keil, and G. C. Craig. Soil moisture–precipitation coupling over Central Europe: Interactions between surface anomalies at
different scales and the dynamical implication. Quarterly Journal of the Royal Meteorological Society, 144:2863–2875, 2018. doi:
10 . 1002 /qj. 3415.
P. Bechtold, J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger. The simulation of the diurnal cycle
of convective precipitation over land in a global model. Quarterly Journal of the Royal Meteorological Society, 130:3119–3137,
2004. doi: 10 . 1256 /qj. 03 . 103.
P. Bechtold, N. Semane, P. Lopez, J-P. Chaboureau, A. Beljaars, and N. Bormann. Representing equilibrium and nonequilibrium
convection in large-scale models. Journal of the Atmospheric Sciences, 71:734–753, 2014. doi: 10 . 1175 /JAS-D- 13 - 0163 . 1.
C. E. Birch, D. J. Parker, J.H. Marsham, D. Copsey, and L. Garcia-Carreras. A seamless assessment of the role of convection in the water
cycle of the West African monsoon. Journal of Geophysical Research: Atmospheres, 119:2890–2912, 2014.
I. A. Boutle, S. E. Belcher, and R. S. Plant. Friction in mid-latitude cyclones: an Ekman-PV mechanism. Atmospheric Science Letters,
16:103–109, 2015. doi: 10 . 1002 /asl 2 . 526.
A. R. Brown. The sensitivity of large-eddy simulations of shallow cumulus convection to resolution and subgrid model. Quarterly
Journal of the Royal Meteorological Society, 125:469–482, 1999. doi: 10 . 1002 /qj. 49712555405.
A. R. Brown, R. T. Cederwall, A. Chlond, P. G. Duynkerke, J-C. Golaz, M. Khairoutdinov, D. C. Lewellen, A. P. Lock, M. K. MacVean,
C-H. Moeng, et al. Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quarterly Journal of the
Royal Meteorological Society, 128:1075–1093, 2002.
N. Brown, M. Weiland, A. Hill, B. Shipway, C. Maynard, T. Allen, and M. Rezny. A highly scalable Met Office NERC Cloud model. In
Proceedings of the 3rd International Conference on Exascale Applications and Software, pages 132–137. University of Edinburgh,
Scotland, UK, 2015.
E. Cardoso-Bihlo, B. Khouider, C. Schumacher, and M. De La Chevrotiére. Using radar data to calibrate a stochastic parametrization of
organized convection. Journal of Advances in Modeling Earth Systems, 11:1655–1684, 2019. doi: 10 . 1029 / 2018 MS 001537.
C. Christopoulos and T. Schneider. Assessing biases and climate implications of the diurnal precipitation cycle in climate models.
Geophysical Research Letters, 48:e2021GL093017, 2021. doi: 10 . 1029 / 2021 GL 093017.
G. Cioni and C. Hohenegger. A simplified model of precipitation enhancement over a heterogeneous surface. Hydrology and Earth
System Sciences, 22:3197–3212, 2018. doi: 10 . 5194 /hess- 22 - 3197 - 2018.
A. J. Clark, W. A. Gallus, and T-C. Chen. Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-
resolving mesoscale models. Monthly Weather Review, 135:3456–3473, 2007. doi: 10 . 1175 /MWR 3467 . 1.
M. Colin, S. Sherwood, O. Geoffroy, S. Bony, and D. Fuchs. Identifying the sources of convective memory in cloud-resolving simulations.
Journal of the Atmospheric Sciences, 76:947–962, 2019. doi: 10 . 1175 /JAS-D- 18 - 0036 . 1.
D. Courault, P. Drobinski, Y. Brunet, P. Lacarrere, and C. Talbot. Impact of surface heterogeneity on a buoyancy-driven convective
boundary layer in light winds. Boundary-Layer Meteorology, 124:383–403, 2007.
A. Dai. Precipitation characteristics in eighteen coupled climate models. Journal of Climate, 19:4605–4630, 2006. doi: 10 . 1175 /
JCLI 3884 . 1.22
N. J. H ARVEY ET AL .
C. L. Daleu, R. S. Plant, S. J. Woolnough, A. J. Stirling, and N. J. Harvey. Memory properties in cloud-resolving simulations of the diurnal
cycle of deep convection. Journal of Advances in Modeling Earth Systems, 12:e2019MS001897, 2020. doi: 10 . 1029 / 2019 MS 001897.
L. Davies, R. S. Plant, and S. H. Derbyshire. A simple model of convection with memory. Journal of Geophysical Research: Atmospheres,
114:D17202, 2009. doi: 10 . 1029 / 2008 JD 011653.
C. Dearden, A. Hill, H. Coe, and T. Choularton. The role of droplet sedimentation in the evolution of low-level clouds over southern West
Africa. Atmospheric Chemistry and Physics, 18:14253–14269, 2018. doi: 10 . 5194 /acp- 18 - 14253 - 2018.
A. Dipankar, S. Webster, X. Sun, C. Snachez, R. North, K. Furtado, J. Wilkinson, A. Lock, S. Vosper, X.-Y. Huang, and D. Barker.
SINGV: A convective-scale weather forecast model for Singapore. Quarterly Journal of the Royal Meteorological Society, 146:
4131–4136, 2020. doi: 10 . 1002 /qj. 3985.
P. A. Dirmeyer, B. A. Cash, J. L. Kinter, T. Jung, L. Marx, M. Satoh, C. Stan, H. Tomita, P. Towers, N. Wedi, D. Achuthavarier, J. M.
Adams, E. L. Altshuler, B. Huang, E. K. Jin, and J. Manganello. Simulating the diurnal cycle of rainfall in global climate models:
resolution versus parameterization. Climate Dynamics, 39:399–418, 2012. doi: 10 . 1007 /s 00382 - 011 - 1127 - 9.
J. D. Fast, L. K. Berg, L. Alexander, D. Bell, E. D’Ambro, J. Hubbe, C. Kuang, J. Liu, C. Long, A. Matthews, F. Mei, R. Newsom,
M. Pekour, T. Pinterich, B. Schmid, S. Schobesberger, J. Shilling, J. N. Smith, S. Springston, K. Suski, J. A. Thornton, J. Tomlinson,
J. Wang, H. Xiao, and A. Zelenyuk. Overview of the HI-SCALE field campaign: A new perspective on shallow convective clouds.
Bulletin of the American Meteorological Society, 100:821–840, 2019. doi: 10 . 1175 /BAMS-D- 18 - 0030 . 1.
L. Garcia-Carreras, D. J. Parker, C. M. Taylor, C. E. Reeves, and J. G. Murphy. Impact of mesoscale vegetation heterogeneities on the
dynamical and thermodynamic properties of the planetary boundary layer. Journal of Geophysical Research: Atmospheres, 115:
D03102, 2010. doi: 10 . 1029 / 2009 JD 012811.
L. Garcia-Carreras, D. J. Parker, and J. H. Marsham. What is the mechanism for the modification of convective cloud distributions by
land surface–induced flows? Journal of the Atmospheric Sciences, 68:619–634, 2011. doi: 10 . 1175 / 2010 JAS 3604 . 1.
L. Gerard and J.-F. Geleyn. Evolution of a subgrid deep convection parametrization in a limited-area model with increasing resolution.
Quarterly Journal of the Royal Meteorological Society, 131:2293–2312, 2005. doi: 10 . 1256 /qj. 04 . 72.
D Gregory and PR Rowntree. A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent
closure. Monthly Weather Review, 118:1483–1506, 1990.
D. P. Grosvenor, P. R. Field, A. A. Hill, and B. J. Shipway. The relative importance of macrophysical and cloud albedo changes for
aerosol-induced radiative effects in closed-cell stratocumulus: insight from the modelling of a case study. Atmospheric Chemistry
and Physics, 17:5155–5183, 2017. doi: 10 . 5194 /acp- 17 - 5155 - 2017.
J-F. Gu, R. S. Plant, C. E. Holloway, T. R. Jones, A. Stirling, P. A. Clark, S. J. Woolnough, and T. L. Webb. Evaluation of the
bulk mass flux formulation using large-eddy simulations. Journal of the Atmospheric Sciences, 77:2115 – 2137, 2020. doi:
10 . 1175 /JAS-D- 19 - 0224 . 1.
F Guichard, JC Petch, J-L Redelsperger, P Bechtold, J-P Chaboureau, S Cheinet, W Grabowski, H Grenier, CG Jones, M Köhler, et al.
Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models.
Quarterly Journal of the Royal Meteorological Society, 130:3139–3172, 2004.
S. Hagos, Z. Feng, R. S. Plant, and A. Protat. A machine learning assisted development of a model for the populations of convective and
stratiform clouds. Journal of Advances in Modeling Earth Systems, 12:e2019MS001798, 2020. doi: 10 . 1029 / 2019 MS 001798.
A. A. Hill, B. J. Shipway, and I. A. Boutle. How sensitive are aerosol-precipitation interactions to the warm rain representation? Journal
of Advances in Modeling Earth Systems, 7:987–1004, 2015. doi: 10 . 1002 / 2014 MS 000422.
C. Hohenegger and B. Stevens. Controls on and impacts of the diurnal cycle of deep convective precipitation. Journal of Advances in
Modeling Earth Systems, 5:801–815, 2013. doi: 10 . 1002 / 2012 MS 000216.N. J. H ARVEY ET AL .
23
H-Y. Huang and S. A. Margulis. On the impact of surface heterogeneity on a realistic convective boundary layer. Water Resources
Research, 45:W04425, 2009. doi: 10 . 1029 / 2008 WR 007175.
S-L. Kang and K. J. Davis. The effects of mesoscale surface heterogeneity on the fair-weather convective atmospheric boundary layer.
Journal of the Atmospheric Sciences, 65:3197–3213, 2008.
S-L. Kang, K. J. Davis, and M. LeMone. Observations of the ABL structures over a heterogeneous land surface during IHOP_2002.
Journal of Hydrometeorology, 8:221–244, 2007. doi: 10 . 1175 /JHM 567 . 1.
J. C. Kealy, G. A. Efstathiou, and R. J. Beare. The onset of resolved boundary-layer turbulence at grey-zone resolutions. Boundary-Layer
Meteorology, 171:31–52, 2019. doi: 10 . 1007 /s 10546 - 018 - 0420 - 0.
M. Khairoutdinov, D. Randall, and C. DeMott. Simulations of the atmospheric general circulation using a cloud-resolving model as a
superparameterization of physical processes. Journal of the Atmospheric Sciences, 62:2136–2154, 2005. doi: 10 . 1175 /JAS 3453 . 1.
D. J. Kirshbaum and J. G. Fairman. Cloud Trails Past the Lesser Antilles. Mon. Wea. Rev., 143:995–1017, 2015.
G. J. Kooperman, M. S. Pritchard, M. A. Burt, M. D. Branson, and D. A. Randall. Robust effects of cloud superparameterization on
simulated daily rainfall intensity statistics across multiple versions of the Community Earth System Model. Journal of Advances in
Modeling Earth Systems, 8:140–165, 2016. doi: 10 . 1002 / 2015 MS 000574.
J. M. Lee, Y. Zhang, and S. A. Klein. The effect of land surface heterogeneity and background wind on shallow cumulus clouds and the
transition to deeper convection. Journal of the Atmospheric Sciences, 76:401–419, 2019. doi: 10 . 1175 /JAS-D- 18 - 0196 . 1.
M-I. Lee, S. D. Schubert, M. J. Suarez, J-K. E. Schemm, H-L. Pan, J. Han, and S-H. Yoo. Role of convection triggers in the simulation of
the diurnal cycle of precipitation over the United States Great Plains in a general circulation model. Journal of Geophysical Research:
Atmospheres, 113:D02111, 2008. doi: 10 . 1029 / 2007 JD 008984.
C. Liu and E. J. Zipser. Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations.
Geophysical Research Letters, 36:L04819, 2008. doi: 10 . 1029 / 2007 GL 032437.
AP Lock, AR Brown, MR Bush, GM Martin, and RNB Smith. A new boundary layer mixing scheme. Part I: Scheme description and
single-column model tests. Monthly Weather Review, 128:3187–3199, 2000.
L. Mahrt. Boundary-layer moisture regimes. Quarterly Journal of the Royal Meteorological Society, 117:151–176, 1991. doi:
10 . 1002 /qj. 49711749708.
B. Maronga and S. Raasch. Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the
LITFASS-2003 experiment. Boundary-Layer Meteorology, 146:17–44, 2013.
J. H. Marsham, S. Dobbie, and R. J. Hogan. Evaluation of a large-eddy model simulation of a mixed-phase altocumulus cloud using
microwave radiometer, lidar and Doppler radar data. Quarterly Journal of the Royal Meteorological Society, 132:1693–1715, 2006.
doi: 10 . 1256 /qj. 05 . 145.
J. H. Marsham, A. M. Blyth, D. J. Parker, K. Beswick, K. A. Browning, U. Corsmeier, N. Kalthoff, S. Khodayar, C. J. Morcrette, and
E. G. Norton. Variable cirrus shading during CSIP IOP 5. II: Effects on the convective boundary layer. Quarterly Journal of the
Royal Meteorological Society, 133:1661–1675, 2007a. doi: 10 . 1002 /qj. 146.
J. H. Marsham, C. J. Morcrette, K. A. Browning, A. M. Blyth, D. J. Parker, U. Corsmeier, N. Kalthoff, and M. Kohler. Variable cirrus
shading during CSIP IOP 5. I: Effects on the initiation of convection. Quarterly Journal of the Royal Meteorological Society, 133:
1643–1660, 2007b. doi: 10 . 1002 /qj. 124.
J. H. Marsham, D. J. Parker, C. M. Grams, B. T. Johnson, W. M. F. Grey, and A. N. Ross. Observations of mesoscale and boundary-layer
scale circulations affecting dust transport and uplift over the Sahara. Atmospheric Chemistry and Physics, 8:6979–6993, 2008. doi:
10 . 5194 /acp- 8 - 6979 - 2008.24
N. J. H ARVEY ET AL .
D. T. McCoy, P. R. Field, A. Schmidt, D. P. Grosvenor, F. A.-M. Bender, B. J. Shipway, A. A. Hill, J. M. Wilkinson, and G. S. Elsaesser.
Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations. Atmospheric Chemistry and Physics, 18:
5821–5846, 2018. doi: 10 . 5194 /acp- 18 - 5821 - 2018.
A. K. Miltenberger, P. R. Field, A. A. Hill, P. Rosenberg, B. J. Shipway, J. M. Wilkinson, R. Scovell, and A. M. Blyth. Aerosol–cloud
interactions in mixed-phase convective clouds – Part 1: Aerosol perturbations. Atmospheric Chemistry and Physics, 18:3119–3145,
2018. doi: 10 . 5194 /acp- 18 - 3119 - 2018.
G. Nikulin, C. Jones, F. Giorgi, G. Asrar, M. Büchner, R. Cerezo-Mota, O. B. Christensen, M. Déqué, J. Fernandez, A. Hänsler, E. van
Meijgaard, P. Samuelsson, M. B. Sylla, and L. Sushama. Precipitation climatology in an ensemble of CORDEX-Africa regional
climate simulations. Journal of Climate, 25:6057–6078, 2012. doi: 10 . 1175 /JCLI-D- 11 - 00375 . 1.
E. G. Patton, P. P. Sullivan, and C-H. Moeng. The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled
to the land surface. Journal of the Atmospheric Sciences, 62:2078–2097, 2005. doi: 10 . 1175 /JAS 3465 . 1.
K. J. Pearson, G. M. S. Lister, C. E. Birch, R. P. Allan, R. J. Hogan, and S. J. Woolnough. Modelling the diurnal cycle of tropical
convection across the ‘grey zone’. Quarterly Journal of the Royal Meteorological Society, 140:491–499, 2014.
I. Y. Petrova, D. G. Miralles, C. C. Van Heerwaarden, and H. Wouters. Relation between convective rainfall properties and antecedent
soil moisture heterogeneity conditions in North Africa. Remote Sensing, 10:969, 2018. doi: 10 . 3390 /rs 10060969.
M. Rieck, C. Hohenegger, and C. C. van Heerwaarden. The influence of land surface heterogeneities on cloud size development. Monthly
Weather Review, 142:3830–3846, 2014. doi: 10 . 1175 /MWR-D- 13 - 00354 . 1.
N. Rochetin, F. Couvreux, and F. Guichard. Morphology of breeze circulations induced by surface flux heterogeneities and their impact
on convection initiation. Quarterly Journal of the Royal Meteorological Society, 143:463–478, 2017. doi: 10 . 1002 /qj. 2935.
T. Sato, H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang. Diurnal cycle of precipitation in the tropics simulated in a global
cloud-resolving model. Journal of Climate, 22:4809–4826, 2009. doi: 10 . 1175 / 2009 JCLI 2890 . 1.
M. Segal and R.W. Arritt. Nonclassical mesoscale circulations caused by surface sensible heat-flux gradients. Bulletin of the American
Meteorological Society, 73:1593–1604, 1992. doi: 10 . 1175 / 1520 - 0477.
B. J. Shipway and A. A. Hill. Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a
kinematic framework. Quarterly Journal of the Royal Meteorological Society, 138:2196–2211, 2012. doi: 10 . 1002 /qj. 1913.
G. J. Shutts and M. E. B. Gray. A numerical modelling study of the geostrophic adjustment process following deep convection. Quarterly
Journal of the Royal Meteorological Society, 120:1145–1178, 1994. doi: 10 . 1002 /qj. 49712051903.
G. L. Stephens, T. L’Ecuyer, R. Forbes, A. Gettelmen, J-C. Golaz, A. Bodas-Salcedo, K. Suzuki, P. Gabriel, and J. Haynes. Dreary state of
precipitation in global models. Journal of Geophysical Research: Atmospheres, 115:D24211, 2010. doi: 10 . 1029 / 2010 JD 014532.
A. J. Stirling and J. C. Petch. The impacts of spatial variability on the development of convection. Quarterly Journal of the Royal
Meteorological Society, 130:3189–3206, 2004.
R. A. Stratton and A. J. Stirling. Improving the diurnal cycle of convection in GCMs. Quarterly Journal of the Royal Meteorological
Society, 138:1121–1134, 2012.
J. Tan, G. J. Huffman, D. T. Bolvin, and E. J. Nelkin. Diurnal cycle of IMERG V06 precipitation. Geophysical Research Letters, 46:
13584–13592, 2019. doi: 10 . 1029 / 2019 GL 085395.
C. M. Taylor, D. J. Parker, and P. P. Harris. An observational case study of mesoscale atmospheric circulations induced by soil moisture.
Geophysical Research Letters, 34, 2007. doi: 10 . 1029 / 2007 GL 030572.
C. M. Taylor, A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe. Frequency of Sahelian storm initiation
enhanced over mesoscale soil-moisture patterns. Nature Geoscience, 4:430, 2011.N. J. H ARVEY ET AL .
25
A. Volonté, P. A. Clark, and S. L. Gray. Idealised simulations of cyclones with robust symmetrically unstable sting jets. Weather and
Climate Dynamics, 1:63–91, 2020. doi: 10 . 5194 /wcd- 1 - 63 - 2020.
D. Walters, A. J. Baran, I. Boutle, M. Brooks, P. Earnshaw, J. Edwards, K. Furtado, P. Hill, A. Lock, J. Manners, C. Morcrette,
J. Mulcahy, C. Sanchez, C. Smith, R. Stratton, W. Tennant, L. Tomassini, K. Van Weverberg, S. Vosper, M. Willett, J. Browse,
A. Bushell, K. Carslaw, M. Dalvi, R. Essery, N. Gedney, S. Hardiman, B. Johnson, C. Johnson, A. Jones, C. Jones, G. Mann,
S. Milton, H. Rumbold, A. Sellar, M. Ujiie, M. Whitall, K. Williams, and M. Zerroukat. The Met Office Unified Model Global
Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development, 12:1909–1963, 2019. doi:
10 . 5194 /gmd- 12 - 1909 - 2019.
M. R. Willett and M. A. Whitall. A simple prognostic based convective entrainment rate for the Unified Model: Description and
tests. Forecasting Research Tech. Rep., 2017. URL https://library.metoffice.gov.uk/Portal/Default/en-GB/RecordView/
Index/ 633651.
D. R. Wilson and S. P. Ballard. A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quarterly
Journal of the Royal Meteorological Society, 125:1607–1636, 1999. doi: doi.org/ 10 . 1002 /qj. 49712555707.
D. R. Wilson, A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette. PC2: A prognostic cloud fraction and condensation
scheme. I: Scheme description. Quarterly Journal of the Royal Meteorological Society, 134:2093–2107, 2008. doi: doi.org/ 10 .
1002 /qj. 333.
A. A. Wing, C. L. Stauffer, T. Becker, K. A. Reed, M-S. Ahn, N. P. Arnold, S. Bony, M. Branson, G. H. Bryan, J-P. Chaboureau, S. R.
de Roode, K. Gayatri, C. Hohenegger, I-K. Hu, F. Jansson, T. R. Jones, M. Khairoutdinov, D. Kim, Z. K. Martin, S. Matsugishi,
B. Medeiros, H. Miura, Y. Moon, S. K. Müller, T. Ohno, M. Popp, T. Prabhakaran, D. Randall, R. Rios-Berrios, N. Rochetin,
R. Roehrig, D. M. Romps, J. H. Ruppert Jr., M. Satoh, L. G. Silvers, M. S. Singh, B. Stevens, L. Tomassini, C. C. van Heerwaarden,
S. Wang, and M. Zhao. Clouds and convective self-aggregation in a multimodel ensemble of radiative-convective equilibrium
simulations. Journal of Advances in Modeling Earth Systems, 12:e2020MS002138, 2020. doi: 10 . 1029 / 2020 MS 002138.
N. Wood, A. Staniforth, A. White, T. Allen, M. Diamantakis, M. Gross, T. Melvin, C. Smith, S. Vosper, M. Zerroukat, and J. Thuburn. An
inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations.
Quarterly Journal of the Royal Meteorological Society, 140:1505–1520, 2014. doi: doi.org/ 10 . 1002 /qj. 2235.
C-M. Wu, M-H. Lo, W-T. Chen, and C-T. Lu. The impacts of heterogeneous land surface fluxes on the diurnal cycle precipitation: A
framework for improving the GCM representation of land-atmosphere interactions. Journal of Geophysical Research: Atmospheres,
120:3714–3727, 2015.
H. Xiao, L. K. Berg, and M. Huang. The impact of surface heterogeneities and land-atmosphere interactions on shallow clouds over
ARM SGP site. Journal of Advances in Modeling Earth Systems, 10:1220–1244, 2018. doi: 10 . 1029 / 2018 MS 001286.
S. Xie, Y-C. Wang, W. Lin, H-Y. Ma, Q. Tang, S. Tang, X. Zheng, J-C Golaz, G. J. Zhang, and M. Zhang. Improved diurnal cycle of
precipitation in E3SM with a revised convective triggering function. Journal of Advances in Modeling Earth Systems, 11:2290–2310,
2019. doi: 10 . 1029 / 2019 MS 001702.
G-Y. Yang and J. Slingo. The diurnal cycle in the tropics. Monthly Weather Review, 129:784–801, 2001.
G. Young, P. J. Connolly, H. M. Jones, and T. W. Choularton. Microphysical sensitivity of coupled springtime Arctic stratocumulus to
modelled primary ice over the ice pack, marginal ice, and ocean. Atmospheric Chemistry and Physics, 17:4209–4227, 2017. doi:
10 . 5194 /acp- 17 - 4209 - 2017. University Staff: Request a correction | Centaur Editors: Update this record |