Exploratory precipitation metrics: spatiotemporal characteristics, process-oriented, and phenomena-basedLeung, L. R. ORCID: https://orcid.org/0000-0002-3221-9467, Boos, W. R., Catto, J. L., A. DeMott, C., Martin, G. M., Neelin, J. D., O'Brien, T. A., Xie, S., Feng, Z., Klingaman, N. P. ORCID: https://orcid.org/0000-0002-2927-9303, Kuo, Y.-H., Lee, R. W. ORCID: https://orcid.org/0000-0002-1946-5559, Martinez-Villalobos, C., Vishnu, S., Priestley, M. D. K., Tao, C. and Zhou, Y. (2022) Exploratory precipitation metrics: spatiotemporal characteristics, process-oriented, and phenomena-based. Journal of Climate, 35 (12). pp. 3659-3686. ISSN 0894-8755
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1175/JCLI-D-21-0590.1 Abstract/SummaryPrecipitation sustains life and supports human activities, making its prediction one of the most societally relevant challenges in weather and climate modeling. Limitations in modeling precipitation underscore the need for diagnostics and metrics to evaluate precipitation in simulations and predictions. While routine use of basic metrics is important for documenting model skill, more sophisticated diagnostics and metrics aimed at connecting model biases to their sources and revealing precipitation characteristics relevant to how model precipitation is used are critical for improving models and their uses. This paper illustrates examples of exploratory diagnostics and metrics including 1) spatiotemporal characteristics metrics such as diurnal variability, probability of extremes, duration of dry spells, spectral characteristics, and spatiotemporal coherence of precipitation; 2) process-oriented metrics based on the rainfall–moisture coupling and temperature–water vapor environments of precipitation; and 3) phenomena-based metrics focusing on precipitation associated with weather phenomena including low pressure systems, mesoscale convective systems, frontal systems, and atmospheric rivers. Together, these diagnostics and metrics delineate the multifaceted and multiscale nature of precipitation, its relations with the environments, and its generation mechanisms. The metrics are applied to historical simulations from phases 5 and 6 of the Coupled Model Intercomparison Project. Models exhibit diverse skill as measured by the suite of metrics, with very few models consistently ranked as top or bottom performers compared to other models in multiple metrics. Analysis of model skill across metrics and models suggests possible relationships among subsets of metrics, motivating the need for more systematic analysis to understand model biases for informing model development.
DownloadsDownloads per month over past year
Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913–941, https://doi.org/10.1175/JAS-D-15-0170.1.
Adames, Á. F., and Y. Ming, 2018: Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: Moisture vortex instability. J. Atmos. Sci., 75, 2083–2106, https://doi.org/10.1175/JAS-D-17-0310.1.
Ahmed, F., Á. F. Adames, and J. D. Neelin, 2020: Deep convective adjustment of temperature and moisture. J. Atmos. Sci., 77, 2163–2186, https://doi.org/10.1175/JAS-D-19-0227.1.
Ahn, M.-S., and Coauthors, 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dyn., 49, 4023–4045, https://doi.org/10.1007/s00382-017-3558-4.
Ahn, M.-S., D. Kim, D. Kang, J. Lee, K. R. Sperber, P. J. Gleckler, X. Jiang, H. Yoo-Geun, and H. Kim, 2020: MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250, https://doi.org/10.1029/2020GL087250.
Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1.
Berry, G., M. J. Reeder, and C. Jakob, 2011: A global climatology of atmospheric fronts. Geophys. Res. Lett., 38, L04809, https://doi.org/10.1029/2010GL046451.
Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 1517–1528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.
Caldwell, P. M., and Coauthors, 2019: The DOE E3SM coupled model version 1: Description and results at high resolution. J. Adv. Model. Earth Syst., 11, 4095–4146, https://doi.org/10.1029/2019MS001870.
Catto, J. L., and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos., 118, 10791, https://doi.org/10.1002/jgrd.50852.
Catto, J. L., C. Jakob, and N. Nicholls, 2015: Can the CMIP5 models represent winter frontal precipitation? Geophys. Res. Lett., 42, 8596–8604, https://doi.org/10.1002/2015GL066015.
Catto, J. L., and A. J. Dowdy, 2021: Understanding compound hazards from a weather system perspective. Wea. Climate Extremes, 32, 100313, https://doi.org/10.1016/j.wace.2021.100313.
Chang, M., B. Liu, C. Martinez-Villalobos, G. Ren, S. Li, and T. Zhou, 2020: Changes in extreme precipitation accumulations during the warm season over continental China. J. Climate, 33, 10 799–10 811, https://doi.org/10.1175/JCLI-D-20-0616.1.
Chen, D., and A. Dai, 2018: Dependence of estimated precipitation frequency and intensity on data resolution. Climate Dyn., 50, 3625–3647, https://doi.org/10.1007/s00382-017-3830-7.
Chen, D., and A. Dai, 2019: Precipitation characteristics in the Community Atmosphere Model and their dependence on model physics and resolution. J. Adv. Model. Earth Syst., 11, 2352–2374, https://doi.org/10.1029/2018MS001536.
Chen, D., A. Dai and A. Hall, 2021, Precipitation partitioning and the “drizzling” bias in CMIP5 models. J. Geophys. Res. Atmos., 126, e2020JD034198, https://doi.org/10.1029/2020JD034198.
Chen, J., A. Dai, and Y. Zhang, 2020: Linkage between projected precipitation and atmospheric thermodynamic changes. J. Climate, 33, 7155–7178, https://doi.org/10.1175/JCLI-D-19-0785.1.
Covey, C., and P. Gleckler, 2014: Standard diagnostics for the diurnal cycle of precipitation. Lawrence Livermore National Laboratory Tech. Rep. LLNL-TR-659685, 11 pp., https://www.osti.gov/servlets/purl/1165787.
Covey, C., P. Gleckler, C. Doutriaux, D. N. Williams, A. Dai, J. Fasullo, K. Trenberth, and A. Berg, 2016: Metrics for the diurnal cycle of precipitation: Toward routine benchmarks for climate models. J. Climate, 29, 4461–4471, https://doi.org/10.1175/JCLI-D-15-0664.1.
Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 1112–1128, https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2.
Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1.
Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 6377–6402, https://doi.org/10.1029/98JD02720.
Dai, A., X. Lin, and K.-L. Hsu, 2007: The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Climate Dyn., 29, 727–744, https://doi.org/10.1007/s00382-007-0260-y.
Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828.
DeMott, C. A., N. P. Klingaman, W. L. Tseng, M. A. Burt, Y. Gao, and D. A. Randall, 2019: The convection connection: How ocean feedbacks affect tropical mean moisture and MJO propagation. J. Geophys. Res. Atmos., 124, 11 910–11 931, https://doi.org/10.1029/2019JD031015.
Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x.
Dettinger, M., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514–523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.
Diaz, M., and W. R. Boos, 2019: Monsoon depression amplification by moist barotropic instability in a vertically sheared environment. Quart. J. Roy. Meteor. Soc., 145, 2666–2684, https://doi.org/10.1002/qj.3585.
Diaz, M., and W. R. Boos, 2021: The influence of surface heat fluxes on the growth of idealized monsoon depressions. J. Atmos. Sci., 78, 2013–2027, https://doi.org/10.1175/JAS-D-20-0359.1.
Ditchek, S. D., W. R. Boos, S. J. Camargo, and M. K. Tippett, 2016: A genesis index for monsoon disturbances. J. Climate, 29, 5189–5203, https://doi.org/10.1175/JCLI-D-15-0704.1.
Dowdy, A., and J. L. Catto, 2017: Extreme weather caused by concurrent cyclone, front and thunderstorm occurrences. Sci. Rep., 7, 40 359, https://doi.org/10.1038/srep40359.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.
Eyring, V., and Coauthors, 2020: Earth System Model Evaluation Tool (ESMValTool) v2.0—An extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020.
Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the trend in central U.S. rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.
Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 1470–1494, https://doi.org/10.1029/2018MS001305.
Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. Hardin, J. Wang, W. Gustafson Jr., and C. Homeyer, 2019: Spatiotemporal characteristics and large-scale environment of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 7303–7328, https://doi.org/10.1175/JCLI-D-19-0137.1.
Feng, Z., F. Song, K. Sakaguchi, and L. R. Leung, 2021a: Evaluation of mesoscale convective systems in climate simulations: Methodological development and results from MPAS-CAM over the United States. J. Climate, 34, 2611–2633, https://doi.org/10.1175/JCLI-D-20-0136.1.
Feng, Z., L. R. Leung, N. Liu, J. Wang, R. A. Houze Jr., J. Li, J. C. Hardin, and J. Guo, 2021b: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. J. Geophys. Res. Atmos., 126, https://doi.org/10.1029/2020JD034202.
Fujinami, H., H. Hirata, M. Kato, and K. Tsuboki, 2020: Mesoscale precipitation systems and their role in the rapid development of a monsoon depression over the Bay of Bengal. Quart. J. Roy. Meteor. Soc., 146, 267–283, https://doi.org/10.1002/qj.3672.
Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014: Atmospheric rivers: A mini-review. Front. Earth Sci., 2, 1–6, https://doi.org/10.3389/feart.2014.00002.
Gleckler, P. J., C. Doutriaux, P. J. Durack, K. E. Taylor, Y. Zhang, D. N. Williams, E. Mason, and J. Servonnat, 2016: A more powerful reality test for climate models, Eos, 97, https://doi.org/10.1029/2016EO051663.
Goldenson, N., L. R. Leung, C. M. Bitz, and E. Blanchard-Wrigglesworth, 2018: Influence of atmospheric rivers on mountain snowpack in the western United States. J. Climate, 31, 9921––9940, https://doi.org/10.1175/JCLI-D-18-0268.1.
Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos., 120, 12 514–12 535, https://doi.org/10.1002/2015JD024257.
Guan, B., D. E. Waliser, and F. M. Ralph, 2018: An intercomparison between reanalysis and dropsonde observations of the total water vapor transport in individual atmospheric rivers. J. Hydrometeor., 19, 321–337, https://doi.org/10.1175/JHM-D-17-0114.1.
Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016.
Henderson, S. A., E. D. Maloney, and S. W. Son, 2017: Madden–Julian oscillation Pacific teleconnections: The impact of the basic state and MJO representation in general circulation models. J. Climate, 30, 4567–4587, https://doi.org/10.1175/JCLI-D-16-0789.1.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803.
Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 37–65, https://doi.org/10.1017/S1350482798000553.
Hirota, H., Y. N. Takayabu, M. Watanabe, M. Kimoto, and M. Chikira, 2014: Role of convective entrainment in spatial distributions of and temporal variations in precipitation over tropical oceans. J. Climate, 27, 8707–8723, https://doi.org/10.1175/JCLI-D-13-00701.1.
Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-3097-2019.
Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55, https://doi.org/10.1175/JHM560.1.
Huffman, G. J., R. F. Adler, A. Behrangi, D. T. Bolvin, E. Nelkin, and Y. Song, 2020: Algorithm Theoretical Basis Document (ATBD) for Global Precipitation Climatology Project version 3.1 precipitation data, 32 pp., https://docserver.gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/GPCP_ATBD_V3.1.pdf.
Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the double-intertropical convergence zone problem and cloud biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA, 110, 4935–4940, https://doi.org/10.1073/pnas.1213302110.
Janowiak, J., B. Joyce, and P. Xie, 2017: NCEP/CPC L3 half hourly 4 km global (60°S–60°N) merged IR V1, accessed 1 March 2021, https://doi.org/10.5067/P4HZB9N27EKU.
Jiang, X., and Coauthors, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 4718–4748, https://doi.org/10.1002/2014JD022375.
Joyce, R. J., and P. Xie, 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 1547–1563, https://doi.org/10.1175/JHM-D-11-022.1.
Klingaman, N. P., G. M. Martin, and A. F. Moise, 2017: ASoP (v1.0): A set of methods for analyzing scales of precipitation in general circulation models. Geosci. Model Dev., 10, 57–83, https://doi.org/10.5194/gmd-10-57-2017.
Krishnamurthy, V., and R. S. Ajayamohan, 2010: Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J. Climate, 23, 4285–4305, https://doi.org/10.1175/2010JCLI2953.1.
Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical convective transition statistics and causality in the water vapor–precipitation relation. J. Atmos. Sci., 74, 915–931, https://doi.org/10.1175/JAS-D-16-0182.1.
Kuo, Y.-H., K. A. Schiro, and J. D. Neelin, 2018: Convective transition statistics over tropical oceans for climate model diagnostics: Observational baseline. J. Atmos. Sci., 75, 1553–1570, https://doi.org/10.1175/JAS-D-17-0287.1.
Kuo, Y.-H., and Coauthors, 2020: Convective transition statistics over tropical oceans for climate model diagnostics: GCM evaluation. J. Atmos. Sci., 77, 379–403, https://doi.org/10.1175/JAS-D-19-0132.1.
Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20, 4497–4525, https://doi.org/10.1175/JCLI4272.1.
Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and Y. Luo, 2017: Causes of model dry and warm bias over central U.S. and impact on climate projections. Nat. Commun., 8, 881, https://doi.org/10.1038/s41467-017-01040-2.
Ma, H.-Y., S. Xie, J. S. Boyle, S. A. Klein, and Y. Zhang, 2013: Metrics and diagnostics for precipitation-related processes in climate model short-range hindcasts. J. Climate, 26, 1516–1534, https://doi.org/10.1175/JCLI-D-12-00235.1.
Mapes, B., and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, https://doi.org/10.1029/2011MS000042.
Martin, G. M., N. P. Klingaman, and A. F. Moise, 2017: Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6. Geosci. Model Dev., 10, 105–126, https://doi.org/10.5194/gmd-10-105-2017.
Martinez-Villalobos, C., and J. D. Neelin, 2018: Shifts in precipitation accumulation extremes during the warm season over the United States. Geophys. Res. Lett., 45, 8586–8595, https://doi.org/10.1029/2018GL078465.
Martinez-Villalobos, C., and J. D. Neelin, 2019: Why do precipitation intensities tend to follow gamma distributions? J. Atmos. Sci., 76, 3611–3631, https://doi.org/10.1175/JAS-D-18-0343.1.
Martinez-Villalobos, C., and J. D. Neelin, 2021: Climate models capture key features of extreme precipitation probabilities across regions. Environ. Res. Lett., 16, 024017, https://doi.org/10.1088/1748-9326/abd351.
McClenny, E. E., P. A. Ullrich, and R. Grotjahn, 2020: Sensitivity of atmospheric river vapor transport and precipitation to uniform sea-surface temperature increases. J. Geophys. Res. Atmos., 21, e2020JD033421, https://doi.org/10.1029/2020JD033421.
Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 2825–2838, https://doi.org/10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2.
Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 1695–1707, https://doi.org/10.1002/2013JD021152.
Mejia, J. F., D. Koračin, and E. M. Wilcox, 2018: Effect of coupled global climate models sea surface temperature biases on simulated climate of the western United States. Int. J. Climatol., 38, 5386–5404, https://doi.org/10.1002/joc.5817.
Mundhenk, B. D., E. A. Barnes, and E. D. Maloney, 2016: All-season climatology and variability of atmospheric river frequencies over the North Pacific. J. Climate, 29, 4885–4903, https://doi.org/10.1175/JCLI-D-15-0655.1.
Murakami, H., 2014: Tropical cyclones in reanalysis data sets. Geophys. Res. Lett., 41, 2133–2141, https://doi.org/10.1002/2014GL059519.
Murthy, V. S., and W. R. Boos, 2020: Quasigeostrophic controls on precipitating ascent in monsoon depressions. J. Atmos. Sci., 77, 1213–1232, https://doi.org/10.1175/JAS-D-19-0202.1.
Neelin, J. D., O. Peters, J. W. B. Lin, K. Hales, and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc., 366A, 2579–2602, https://doi.org/10.1098/rsta.2008.0056.
Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 2367–2384, https://doi.org/10.1175/2009JAS2962.1.
Neelin, J. D., S. Sahany, S. N. Stechmann, and D. N. Bernstein, 2017: Global warming precipitation accumulation increases above the current-climate cutoff scale. Proc. Natl. Acad. Sci. USA, 114, 1258–1263, https://doi.org/10.1073/pnas.1615333114.
Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 2702–2721, https://doi.org/10.1175/MWR3200.1.
O’Brien, T. A., and Coauthors, 2020a: Detection uncertainty matters for understanding atmospheric rivers. Bull. Amer. Meteor. Soc., 101 (6), E790–E796, https://doi.org/10.1175/BAMS-D-19-0348.1.
O’Brien, T. A., and Coauthors, 2020b: Detection of atmospheric rivers with inline uncertainty quantification: TECA-BARD v1.0.1. Geosci. Model Dev., 13, 6131–6148, https://doi.org/10.5194/gmd-13-6131-2020.
O’Brien, T. A., and Coauthors, 2022: Increases in future AR count and size: Overview of the ARTMIP Tier 2 CMIP5/6 experiment. J. Geophys. Res. Atmos., 127, e2021JD036013. https://doi.org/10.1029/2021JD036013.
Oueslati, B., and G. Bellon, 2013: Convective entrainment and large-scale organization of tropical precipitation: Sensitivity of the CNRM-CM5 hierarchy of models. J. Climate, 26, 2931–2946, https://doi.org/10.1175/JCLI-D-12-00314.1.
Payne, A. E., and G. Magnusdottir, 2015: An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J. Geophys. Res. Atmos., 120, 11 173–11 190, https://doi.org/10.1002/2015JD023586.
Pendergrass, A. G., P. J. Gleckler, L. R. Leung, and C. Jakob, 2020: Benchmarking simulated precipitation in Earth system models. Bull. Amer. Meteor. Soc., 101 (6), E814–E816, https://doi.org/10.1175/BAMS-D-19-0318.1.
Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney, 2007: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J. Climate, 20, 4356–4376, https://doi.org/10.1175/JCLI4253.1.
Pierrehumbert, R. T., H. Brogniez, and R. Roca, 2007: On the relative humidity of the Earth’s atmosphere. The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 143–185.
Praveen, V., S. Sandeep, and R. S. Ajayamohan, 2015: On the relationship between mean monsoon precipitation and low pressure systems in climate model simulations. J. Climate, 28, 5305–5324, https://doi.org/10.1175/JCLI-D-14-00415.1.
Qian, T., A. Dai, K. E. Trenberth, and K. W. Oleson, 2006: Simulation of global land surface conditions from 1948–2004. Part I: Forcing data and evaluation. J. Hydrometeor., 7, 953–975, https://doi.org/10.1175/JHM540.1.
Ralph, F. M., M. D. Dettinger, M. M. Cairns, T. J. Galarneau, and J. Eylander, 2018: Defining “atmospheric river”: How the Glossary of Meteorology helped resolve a debate. Bull. Amer. Meteor. Soc., 99, 837–839, https://doi.org/10.1175/BAMS-D-17-0157.1.
Rao, K. V., and S. Rajamani, 1970: Diagnostic study of a monsoon depression by geostrophic baroclinic model. MAUSAM, 21, 187–194, https://doi.org/10.54302/mausam.v21i2.5366.
Rutz, J. J., W. J. Steenburgh, and F. Martin Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905–921, https://doi.org/10.1175/MWR-D-13-00168.1.
Rutz, J. J., and Coauthors, 2019: The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos., 124, 13 777–13 802, https://doi.org/10.1029/2019JD030936.
Sabin, P., T. Krishnan, R. Ghattas, S. Denvil, J. L. Dufresne, F. Hourdin, and T. Pascal, 2013: High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Climate Dyn., 41, 173–194, https://doi.org/10.1007/s00382-012-1658-8.
Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1.
Sanders, F., 1984: Quasi-geostrophic diagnosis of the monsoon depression of 5–8 July 1979. J. Atmos. Sci., 41, 538–552, https://doi.org/10.1175/1520-0469(1984)041<0538:QGDOTM>2.0.CO;2.
Sellars, S. L., B. Kawzenuk, P. Nguyen, F. M. Ralph, and S. Sorooshian, 2017: Genesis, pathways, and terminations of intense global water vapor transport in association with large-scale climate patterns. Geophys. Res. Lett., 44, 12 465–12 475, https://doi.org/10.1002/2017GL075495.
Shields, C. A., and J. T. Kiehl, 2016: Simulating the Pineapple Express in the half degree Community Climate System Model, CCSM4. Geophys. Res. Lett., 43, 7767–7773, https://doi.org/10.1002/2016GL069476.
Shields, C. A., and Coauthors, 2018: Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project goals and experimental design. Geosci. Model Dev., 11, 2455–2474, https://doi.org/10.5194/gmd-11-2455-2018.
Sikka, D. R., 1980: Some aspects of the large scale fluctuations of summer monsoon rainfall over India in relation to fluctuations in the planetary and regional scale circulation parameters. Proc. Indian Acad. Sci. Earth Planet. Sci., 89, 179–195, https://doi.org/10.1007/BF02913749.
Skinner, C. B., J. M. Lora, A. E. Payne, and C. J. Poulsen, 2020: Atmospheric river changes shaped mid-latitude hydroclimate since the mid-Holocene. Earth Planet. Sci. Lett., 541, 116293, https://doi.org/10.1016/j.epsl.2020.116293.
Song, F., Z. Feng, L. R. Leung, R. A. Houze Jr., J. Wang, J. Hardin, and C. Homeyer, 2019: Contrasting the spring and summer large-scale environments associated with mesoscale convective systems over the U.S. Great Plains. J. Climate, 32, 6749–6767, https://doi.org/10.1175/JCLI-D-18-0839.1.
Sperber, K. R., and D. Kim, 2012: Simplified metrics for the identification of the Madden–Julian oscillation in models. Atmos. Sci. Lett., 13, 187–193, https://doi.org/10.1002/asl.378.
Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 2711–2744, https://doi.org/10.1007/s00382-012-1607-6.
Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical–extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902–937, https://doi.org/10.1002/2016RG000538.
Stechmann, S. N., and J. D. Neelin, 2014: First-passage-time prototypes for precipitation statistics. J. Atmos. Sci., 71, 3269–3291, https://doi.org/10.1175/JAS-D-13-0268.1.
Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.
Stevenson, S. N., and R. S. Schumacher, 2014: A 10-year survey of extreme rainfall events in the central and eastern United States using gridded multisensor precipitation analyses. Mon. Wea. Rev., 142, 3147–3162, https://doi.org/10.1175/MWR-D-13-00345.1.
Tan, J., G. J. Huffman, D. T. Bolvin, and E. J. Nelkin, 2019: Diurnal cycle of IMERG V06 precipitation. Geophys. Res. Lett., 46, 13 584–13 592, https://doi.org/10.1029/2019GL085395.
Tang, S., P. Gleckler, S. Xie, J. Lee, M. S. Ahn, C. Covey, and C. Zhang, 2021: Evaluating the diurnal and semidiurnal cycle of precipitation in CMIP6 models using satellite-and ground-based observations. J. Climate, 34, 3189–3210, https://doi.org/10.1175/JCLI-D-20-0639.1.
Tapiador, F. J., R. Roca, A. Del Genio, B. Dewitte, W. Petersen, and F. Zhang, 2019: Is precipitation a good metric for model performance? Bull. Amer. Meteor. Soc., 100, 223–233, https://doi.org/10.1175/BAMS-D-17-0218.1.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Thomas, C. M., and D. M. Schultz, 2019: What are the best thermodynamic quantity and function to define a front in gridded model output? Bull. Amer. Meteor. Soc., 100, 873–895, https://doi.org/10.1175/BAMS-D-18-0137.1.
Tian, B., 2015: Spread of model climate sensitivity linked to double-Intertropical Convergence Zone bias. Geophys. Res. Lett., 42, 4133–4141, https://doi.org/10.1002/2015GL064119.
Tian, B., and X. Dong, 2020: The double-ITCZ bias in CMIP3, CMIP5, and CMIP6 models based on annual mean precipitation. Geophys. Res. Lett., 47, e2020GL087232, https://doi.org/10.1029/2020GL087232.
Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeor., 8, 758–769, https://doi.org/10.1175/JHM600.1.
TRMM, 2011: TRMM Precipitation Radar rainfall rate and profile L2 1.5 hours V7. Goddard Earth Sciences Data and Information Services Center, accessed 19 August 2016, https://disc.gsfc.nasa.gov/datacollection/TRMM_2A25_7.html.
Ullrich, P. A., and C. M. Zarzycki, 2017: TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geosci. Model Dev., 10, 1069–1090, https://doi.org/10.5194/gmd-10-1069-2017.
Vishnu, S., W. R. Boos, P. A. Ullrich, and T. A. O’Brien, 2020: Assessing historical variability of South Asian monsoon lows and depressions with an optimized tracking algorithm. J. Geophys. Res. Atmos., 125, e2020JD032977, https://doi.org/10.1029/2020JD032977.
Wang, B., and Coauthors, 2018: Dynamics-oriented diagnostics for the Madden–Julian oscillation. J. Climate, 31, 3117–3135, https://doi.org/10.1175/JCLI-D-17-0332.1.
Wang, J., H. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020: MJO teleconnections over the PNA region in climate models. Part II: Impacts of the MJO and basic state. J. Climate, 33, 5081–5101, https://doi.org/10.1175/JCLI-D-19-0865.1.
Wentz, F. J., C. Gentemann, and K. A. Hilburn, 2015: Remote Sensing Systems TRMM TMI Daily Environmental Suite on 0.25 deg grid, version 7.1. Remote Sensing Systems, accessed 8 July 2016, www.remss.com/missions/tmi.
Wolding, B., J. Dias, G. Kiladis, F. Ahmed, S. W. Powell, E. Maloney, and M. Branson, 2020: Interactions between moisture and tropical convection. Part I: The coevolution of moisture and convection. J. Atmos. Sci., 77, 1783–1799, https://doi.org/10.1175/JAS-D-19-0225.1.
Xie, S., and Coauthors, 2010: Clouds and more: ARM climate modeling best estimate data. Bull. Amer. Meteor. Soc., 91, 13–20, https://doi.org/10.1175/2009BAMS2891.1.
Xie, S., and Coauthors, 2019: Improved diurnal cycle of precipitation in E3SM with a revised convective triggering function. J. Adv. Model. Earth Syst., 11, 2290–2310, https://doi.org/10.1029/2019MS001702.
Xie, S., R. T. Cederwall, and M. Zhang, 2004: Developing long-term single-column model/cloud system–resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations. J. Geophys. Res., 109, D01104, https://doi.org/10.1029/2003JD004045.
Yadav, P., and D. M. Straus, 2017: Circulation response to fast and slow MJO episodes. Mon. Wea. Rev., 145, 1577–1596, https://doi.org/10.1175/MWR-D-16-0352.1.
Yang, G. Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784–801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.
Yin, L., R. Fu, E. Shevliakova, and R. E. Dickinson, 2013: How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dyn., 41, 3127–3143, https://doi.org/10.1007/s00382-012-1582-y.
Zhou, Y., T. A. O’Brien, P. A. Ullrich, W. D. Collins, C. M., Patricola, and A. M. Rhoades, 2021: Uncertainties in atmospheric river lifecycles by detection algorithms: Climatology and variability. J. Geophys. Res. Atmos., 126, e2020JD033711, https://doi.org/10.1029/2020JD033711. University Staff: Request a correction | Centaur Editors: Update this record |