1. Nagai, N., et al., Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol, 2000. 150(6): p. 1499-506.
2. Kambe, K., et al., Preferential localization of heat shock protein 47 in dilated endoplasmic reticulum of chicken chondrocytes. J Histochem Cytochem, 1994. 42(7): p. 833-41.
3. Masuda, H., et al., Coexpression of the collagen-binding stress protein HSP47 gene and the alpha 1(I) and alpha 1(III) collagen genes in carbon tetrachloride-induced rat liver fibrosis. J Clin Invest, 1994. 94(6): p. 2481-8.
4. Nagata, K., Hsp47: a collagen-specific molecular chaperone TIBS, 1996. 21: p. 23-26.
5. Kaiser, W.J., et al., A functional proteomic method for the enrichment of peripheral membrane proteins reveals the collagen binding protein Hsp47 is exposed on the surface of activated human platelets. J Proteome Res, 2009. 8(6): p. 2903-14.
6. Sasikumar, P., et al., The chaperone protein HSP47: a platelet collagen binding protein that contributes to thrombosis and hemostasis. J Thromb Haemost, 2018. 16(5): p. 946-959.
7. Rowley, J.W., et al., Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood, 2011. 118(14): p. e101-11.
8. White, J.G., Interaction of membrane systems in blood platelets. Am J Pathol, 1972. 66(2): p. 295-312.
9. van Nispen tot Pannerden, H.E., et al., Platelet protein disulfide isomerase is localized in the dense tubular system and does not become surface expressed after activation. Blood, 2009. 114(21): p. 4738-4740.
10. Crescente, M., et al., Intracellular Trafficking, Localization, and Mobilization of Platelet-Borne Thiol Isomerases. Arterioscler Thromb Vasc Biol, 2016.
11. Pageon, S.V., et al., Clus-DoC: a combined cluster detection and colocalization analysis for single-molecule localization microscopy data. Mol Biol Cell, 2016. 27(22): p. 3627-3636.
12. Jonnalagadda, D., et al., Granule-mediated release of sphingosine-1-phosphate by activated platelets. Biochim Biophys Acta, 2014. 1841(11): p. 1581-9.
13. Lefebvre, P., et al., Role of actin in platelet function. Eur J Cell Biol, 1993. 62(2): p. 194-204.
14. Flaumenhaft, R., et al., The actin cytoskeleton differentially regulates platelet α-granule and dense-granule secretion. Blood, 2005. 105(10): p. 3879-3887.
15. Clark, J.C., et al., Evidence that GPVI is Expressed as a Mixture of Monomers and Dimers, and that the D2 Domain is not Essential for GPVI Activation. Thromb Haemost, 2021. 121(11): p. 1435-1447.
16. Jandrot-Perrus, M., et al., Cloning, characterization, and functional studies of human and mouse glycoprotein VI: a platelet-specific collagen receptor from the immunoglobulin superfamily. Blood, 2000. 96(5): p. 1798-807.
17. Horii, K., M.L. Kahn, and A.B. Herr, Structural basis for platelet collagen responses by the immune-type receptor glycoprotein VI. Blood, 2006. 108(3): p. 936-42.
18. Jung, S.M., K. Tsuji, and M. Moroi, Glycoprotein (GP) VI dimer as a major collagen-binding site of native platelets: direct evidence obtained with dimeric GPVI-specific Fabs. J Thromb Haemost, 2009. 7(8): p. 1347-55.
19. Jung, S.M., et al., Constitutive dimerization of glycoprotein VI (GPVI) in resting platelets is essential for binding to collagen and activation in flowing blood. J Biol Chem, 2012. 287(35): p. 30000-13.
20. Poulter, N.S., et al., Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets. J Thromb Haemost, 2017. 15(3): p. 549-564.
21. Loyau, S., et al., Platelet glycoprotein VI dimerization, an active process inducing receptor competence, is an indicator of platelet reactivity. Arterioscler Thromb Vasc Biol, 2012. 32(3): p. 778-85.
22. Lamande, S.R. and J.F. Bateman, Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Semin Cell Dev Biol, 1999. 10(5): p. 455-64.
23. Varga-Szabo, D., A. Braun, and B. Nieswandt, Calcium signaling in platelets. J Thromb Haemost, 2009. 7(7): p. 1057-66.
24. Bye, A.P., A.J. Unsworth, and J.M. Gibbins, Platelet signaling: a complex interplay between inhibitory and activatory networks. J Thromb Haemost, 2016. 14(5): p. 918-30.
25. Yacoub, D., et al., Essential role of protein kinase C delta in platelet signaling, alpha IIb beta 3 activation, and thromboxane A2 release. J Biol Chem, 2006. 281(40): p. 30024-35.
26. Watanabe, D., et al., Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem, 2001. 276(42): p. 38595-601.
27. Gibbins, J.M., et al., The p85 subunit of phosphatidylinositol 3-kinase associates with the Fc receptor gamma-chain and linker for activitor of T cells (LAT) in platelets stimulated by collagen and convulxin. J Biol Chem, 1998. 273(51): p. 34437-43.
28. Zhang, W., et al., LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell, 1998. 92(1): p. 83-92.
29. Sada, K., et al., Structure and function of Syk protein-tyrosine kinase. J Biochem, 2001. 130(2): p. 177-86.
30. Benhamou, M., et al., Protein-tyrosine kinase p72syk in high affinity IgE receptor signaling. Identification as a component of pp72 and association with the receptor gamma chain after receptor aggregation. J Biol Chem, 1993. 268(31): p. 23318-24.
31. Shiue, L., et al., Interaction of p72syk with the gamma and beta subunits of the high-affinity receptor for immunoglobulin E, Fc epsilon RI. Molecular and Cellular Biology, 1995. 15(1): p. 272-281.
32. Bye, A.P., et al., Severe platelet dysfunction in NHL patients receiving ibrutinib is absent in patients receiving acalabrutinib. Blood Adv, 2017. 1(26): p. 2610-2623.
33. Thienel, M., et al., Immobility-associated thromboprotection is conserved across mammalian species from bear to human. Science, 2023. 380(6641): p. 178-187.
34. Spector, I., et al., New anti-actin drugs in the study of the organization and function of the actin cytoskeleton. Microsc Res Tech, 1999. 47(1): p. 18-37.
35. Feitsma, L.J., et al., Structural insights into collagen binding by platelet receptor glycoprotein VI. Blood, 2022. 139(20): p. 3087-3098.
36. Ebrahim, M., et al., Dimeric Glycoprotein VI Binds to Collagen but Not to Fibrin. Thromb Haemost, 2018. 118(2): p. 351-361.
37. Tasab, M., M.R. Batten, and N.J. Bulleid, Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen. Embo j, 2000. 19(10): p. 2204-11.
38. Matsuoka, Y., et al., Insufficient folding of type IV collagen and formation of abnormal basement membrane-like structure in embryoid bodies derived from Hsp47-null embryonic stem cells. Mol Biol Cell, 2004. 15(10): p. 4467-75.
39. Senis, Y.A., A. Mazharian, and J. Mori, Src family kinases: at the forefront of platelet activation. Blood, 2014. 124(13): p. 2013-24.
40. Berlanga, O., et al., The Fc receptor gamma-chain is necessary and sufficient to initiate signalling through glycoprotein VI in transfected cells by the snake C-type lectin, convulxin. Eur J Biochem, 2002. 269(12): p. 2951-60.
41. Ellison, S., et al., CD148 enhances platelet responsiveness to collagen by maintaining a pool of active Src family kinases. J Thromb Haemost, 2010. 8(7): p. 1575-83.
42. Inoue, O., et al., Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J Cell Biol, 2003. 160(5): p. 769-80.