Accessibility navigation


Investigating differences between Tropical cyclone detection systems

Galea, D., Hodges, K. ORCID: https://orcid.org/0000-0003-0894-229X and Lawrence, B. N. ORCID: https://orcid.org/0000-0001-9262-7860 (2024) Investigating differences between Tropical cyclone detection systems. Artificial Intelligence for the Earth Systems, 3 (2). e220046. ISSN 2769-7525

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

2MB
[img] Text - Accepted Version
· Restricted to Repository staff only

1MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/AIES-D-22-0046.1

Abstract/Summary

Tropical cyclones (TCs) are important phenomena, and understanding their behavior requires being able to detect their presence in simulations. Detection algorithms vary; here we compare a novel deep learning–based detection algorithm (TCDetect) with a state-of-the-art tracking system (TRACK) and an observational dataset (IBTrACS) to provide context for potential use in climate simulations. Previous work has shown that TCDetect has good recall, particularly for hurricane-strength events. The primary question addressed here is to what extent the structure of the systems plays a part in detection. To compare with observations of TCs, it is necessary to apply detection techniques to reanalysis. For this purpose, we use ERA-Interim, and a key part of the comparison is the recognition that ERA-Interim itself does not fully reflect the observations. Despite that limitation, both TCDetect and TRACK applied to ERA-Interim mostly agree with each other. Also, when considering only hurricane-strength TCs, TCDetect and TRACK correspond well to the TC observations from IBTrACS. Like TRACK, TCDetect has good recall for strong systems; however, it finds a significant number of false positives associated with weaker TCs (i.e., events detected as having hurricane strength but are weaker in reality) and extratropical storms. Because TCDetect was not trained to locate TCs, a post hoc method to perform comparisons was used. Although this method was not always successful, some success in matching tracks and events in physical space was also achieved. The analysis of matches suggested that the best results were found in the Northern Hemisphere and that in most regions the detections followed the same patterns in time no matter which detection method was used.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:113917
Publisher:American Meteorological Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation