Gas-phase rate coefficients for reactions of NO3, OH, O-3 and O(P-3) with unsaturated alcohols and ethers: correlations and structure-activity relations (SARs)Pfrang, C., King, M.D., Braeckevelt, M., Canosa-Mas, C.E. and Wayne, R.P. (2008) Gas-phase rate coefficients for reactions of NO3, OH, O-3 and O(P-3) with unsaturated alcohols and ethers: correlations and structure-activity relations (SARs). Atmospheric Environment, 42 (13). pp. 3018-3034. ISSN 1352-2310 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.atmosenv.2007.12.046 Abstract/SummaryExperimental difficulties sometimes force modellers to use predicted rate coefficients for reactions of oxygenated volatile organic compounds (oVOCs). We examine here methods for making the predictions for reactions of atmospheric initiators of oxidation, NO3, OH, O-3 and O(P-3), with unsaturated alcohols and ethers. Logarithmic correlations are found between measured rate coefficients and calculated orbital energies, and these correlations may be used directly to estimate rate coefficients for compounds where measurements have not been performed. To provide a shortcut that obviates the need to calculate orbital energies, structure-activity relations (SARs) are developed. Our SARs are tested for predictive power against compounds for which experimental rate coefficients exist, and their accuracy is discussed. Estimated atmospheric lifetimes for oVOCs are presented. The SARs for alkenols successfully predict key rate coefficients, and thus can be used to enhance the scope of atmospheric models incorporating detailed chemistry. SARs for the ethers have more limited applicability, but can still be useful in improving tropospheric models. (C) 2008 Elsevier Ltd. All rights reserved.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |