Accessibility navigation


Evaluation of multi-season convection-permitting atmosphere - mixed layer ocean simulations of the Maritime Continent

Howard, E., Woolnough, S. ORCID: https://orcid.org/0000-0003-0500-8514, Klingaman, N. ORCID: https://orcid.org/0000-0002-2927-9303, Shipley, D. ORCID: https://orcid.org/0000-0002-7812-8309, Sanchez, C., Peatman, S. C., Birch, C. E. and Matthews, A. J. (2024) Evaluation of multi-season convection-permitting atmosphere - mixed layer ocean simulations of the Maritime Continent. Geoscientific Model Development, 17 (9). pp. 3815-3837. ISSN 1991-9603

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

5MB
[img] Text - Accepted Version
· Restricted to Repository staff only

5MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/gmd-17-3815-2024

Abstract/Summary

A multi-season convection permitting regional climate simulation of the Maritime Continent using the Met Office Unified Model with 2.2-km grid spacing is presented and evaluated. The simulations pioneer the use of atmosphere-ocean coupling with the multi-column K profile parametrisation (KPP) mixed layer ocean model in atmospheric convection permitting climate simulations. Comparisons are made against a convection parametrised simulation in which it is nested, and which in turn derives boundary conditions from ERA5 reanalysis. This paper describes the configuration, performance of the mean state and variability of the two simulations compared against observational datasets. The models both have minor sea surface temperature (SST) and wet precipitation biases. The diurnal cycle, representation of equatorial waves and relationship between SST and precipitation are all improved in the convection permitting model compared to the convection parametrised model. The MJO is present in both models with a faster than observed propagation speed. However, it is unclear whether fidelity of the MJO simulation is inherent to the model or whether it predominantly arises from the forcing at the boundaries.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:115851
Publisher:European Geosciences Union

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation