Accessibility navigation


Calibrating estimates of ionospheric long-term change

Scott, C. ORCID: https://orcid.org/0000-0001-6411-5649, Wild, M., Barnard, L. ORCID: https://orcid.org/0000-0001-9876-4612, Yu, B., Yokoyama, T., Lockwood, M. ORCID: https://orcid.org/0000-0002-7397-2172, Mitchell, C., Coxon, J. and Kavanagh, A. (2024) Calibrating estimates of ionospheric long-term change. Annales Geophysicae. ISSN 1432-0576 (In Press)

[img] Text - Accepted Version
· Restricted to Repository staff only
· The Copyright of this document has not been checked yet. This may affect its availability.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Abstract/Summary

Long-term reduction (∼ 20km) in the height of the ionospheric F2 layer, hmF2, is predicted to result from increased levels of tropospheric greenhouse gases. Sufficiently long sequences of ionospheric data exist to investigate this long-term change, recorded by a global network of ionosondes. However, direct measurements of ionospheric layer height with these instruments is not possible. As a result, most estimates of hmF2 rely on empirical formulae based on parameters routinely scaled from ionograms. Estimates of trends in hmF2 using these formulae show no global consensus. We present an analysis in which data from the Japanese ionosonde station at Kokubunji were used to estimate monthly median values of hmF2 using an empirical formula. These were then compared with direct measurements of the F2 layer height determined from Incoherent Scatter measurements made at the Shigaraki MU observatory, Japan. Our results reveal that the formula introduces diurnal, seasonal and long-term biases in the estimates of hmF2 of ≈ ±10% (±25km an altitude of 250km). These are of similar magnitude to layer height changes anticipated as a result of climate change. The biases in the formula can be explained by changes in thermospheric composition that simultaneously reduce the peak density of the F2 layer and modulate the underlying F1 layer ionisation. The presence of an F1 layer is not accounted for in the empirical formula. We demonstrate, that for Kokobunji, the ratios of F2/E and F2/F1 critical frequencies are strongly controlled by changes in geomagnetic activity represented by the am index. Changes in thermospheric composition in response to geomagnetic activity have previously been shown to be highly localised. We conclude that localised changes in thermospheric composition modulate the F2/E and F2/F1 peak ratios, leading to differences in hmF2 trends.We further conclude that the influence of thermospheric composition on the underlying ionosphere needs to be accounted for in these empirical formulae if they are to be applied to studies of long-term ionospheric change.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:117424

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation