[1] E. Bialystok, The bilingual adaptation: How minds accommodate experience, Psychological Bulletin 143 (2017) 233–262. https://doi.org/10.1037/bul0000099.
[2] C. Pliatsikas, Understanding structural plasticity in the bilingual brain: The Dynamic Restructuring Model, Bilingualism: Language and Cognition 23 (2020) 459–471. https://doi.org/10.1017/S1366728919000130.
[3] L. Tao, G. Wang, M. Zhu, Q. Cai, Bilingualism and domain-general cognitive functions from a neural perspective: A systematic review, Neuroscience & Biobehavioral Reviews 125 (2021) 264–295. https://doi.org/10.1016/j.neubiorev.2021.02.029.
[4] E. Bialystok, F.I.M. Craik, How does bilingualism modify cognitive function? Attention to the mechanism, Psychon Bull Rev 29 (2022) 1246–1269. https://doi.org/10.3758/s13423-022-02057-5.
[5] J.G. Grundy, The effects of bilingualism on executive functions: an updated quantitative analysis, J Cult Cogn Sci 4 (2020) 177–199. https://doi.org/10.1007/s41809-020-00062-5.
[6] M. Antoniou, The Advantages of Bilingualism Debate, Annual Review of Linguistics 5 (2019) 395–415. https://doi.org/10.1146/annurev-linguistics-011718-011820.
[7] E. Leivada, M. Westergaard, J.A. Duñabeitia, J. Rothman, On the phantom-like appearance of bilingualism effects on neurocognition: (How) should we proceed?, Bilingualism: Language and Cognition 24 (2021) 197–210. https://doi.org/10.1017/S1366728920000358.
[8] C. Pliatsikas, V. DeLuca, T. Voits, The Many Shades of Bilingualism: Language Experiences Modulate Adaptations in Brain Structure, Language Learning 70 (2020) 133–149. https://doi.org/10.1111/lang.12386.
[9] J. Rothman, F. Bayram, V. DeLuca, G.D. Pisa, J.A. Duñabeitia, K. Gharibi, J. Hao, N. Kolb, M. Kubota, T. Kupisch, T. Laméris, A. Luque, B. van Osch, S.M.P. Soares, Y. Prystauka, D. Tat, A. Tomić, T. Voits, S. Wulff, Monolingual comparative normativity in bilingualism research is out of “control”: Arguments and alternatives, Applied Psycholinguistics 44 (2023) 316–329. https://doi.org/10.1017/S0142716422000315.
[10] T. Voits, C. Pliatsikas, H. Robson, J. Rothman, Beyond Alzheimer’s disease: Can bilingualism be a more generalized protective factor in neurodegeneration?, Neuropsychologia 147 (2020) 107593. https://doi.org/10.1016/j.neuropsychologia.2020.107593.
[11] F. Gallo, J. Abutalebi, The unique role of bilingualism among cognitive reserve-enhancing factors, Bilingualism: Language and Cognition 27 (2024) 287–294. https://doi.org/10.1017/S1366728923000317.
[12] D. Chapko, R. McCormack, C. Black, R. Staff, A. Murray, Life-course determinants of cognitive reserve (CR) in cognitive aging and dementia – a systematic literature review, Aging & Mental Health 22 (2018) 921–932. https://doi.org/10.1080/13607863.2017.1348471.
[13] S.-T. Cheng, Cognitive Reserve and the Prevention of Dementia: the Role of Physical and Cognitive Activities, Curr Psychiatry Rep 18 (2016) 85. https://doi.org/10.1007/s11920-016-0721-2.
[14] M.E. Nelson, D.J. Jester, A.J. Petkus, R. Andel, Cognitive Reserve, Alzheimer’s Neuropathology, and Risk of Dementia: A Systematic Review and Meta-Analysis, Neuropsychol Rev 31 (2021) 233–250. https://doi.org/10.1007/s11065-021-09478-4.
[15] G. Santangelo, M. Altieri, A. Gallo, L. Trojano, Does cognitive reserve play any role in multiple sclerosis? A meta-analytic study, Multiple Sclerosis and Related Disorders 30 (2019) 265–276. https://doi.org/10.1016/j.msard.2019.02.017.
[16] I. Saywell, L. Foreman, B. Child, A.L. Phillips-Hughes, L. Collins-Praino, I. Baetu, Influence of cognitive reserve on cognitive and motor function in α-synucleinopathies: A systematic review and multilevel meta-analysis, Neuroscience & Biobehavioral Reviews 161 (2024) 105672. https://doi.org/10.1016/j.neubiorev.2024.105672.
[17] M.V. Soloveva, S.D. Jamadar, G. Poudel, N. Georgiou-Karistianis, A critical review of brain and cognitive reserve in Huntington’s disease, Neuroscience & Biobehavioral Reviews 88 (2018) 155–169. https://doi.org/10.1016/j.neubiorev.2018.03.003.
[18] A. De Houwer, Bilingual Development in Childhood, Elements in Child Development (2021). https://doi.org/10.1017/9781108866002.
[19] V. DeLuca, J. Rothman, E. Bialystok, C. Pliatsikas, Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function, Proc Natl Acad Sci U S A 116 (2019) 7565–7574. https://doi.org/10.1073/pnas.1811513116.
[20] M. Korenar, J. Treffers-Daller, C. Pliatsikas, Dynamic effects of bilingualism on brain structure map onto general principles of experience-based neuroplasticity, Sci Rep 13 (2023) 3428. https://doi.org/10.1038/s41598-023-30326-3.
[21] L. Marin-Marin, V. Costumero, C. Ávila, C. Pliatsikas, Dynamic Effects of Immersive Bilingualism on Cortical and Subcortical Grey Matter Volumes, Frontiers in Psychology 13 (2022). https://www.frontiersin.org/articles/10.3389/fpsyg.2022.886222 (accessed July 8, 2022).
[22] C. Pliatsikas, S.M. Pereira Soares, T. Voits, V. Deluca, J. Rothman, Bilingualism is a long-term cognitively challenging experience that modulates metabolite concentrations in the healthy brain, Sci Rep 11 (2021) 7090. https://doi.org/10.1038/s41598-021-86443-4.
[23] T. Voits, H. Robson, J. Rothman, C. Pliatsikas, The effects of bilingualism on hippocampal volume in ageing bilinguals, Brain Struct Funct 227 (2022) 979–994. https://doi.org/10.1007/s00429-021-02436-z.
[24] T. Voits, J. Rothman, M. Calabria, H. Robson, N. Aguirre, G. Cattaneo, V. Costumero, M. Hernández, M.J. Puig, L. Marín-Marín, A. Suades, A. Costa, C. Pliatsikas, Hippocampal adaptations in Mild Cognitive Impairment patients are modulated by bilingual language experiences, Bilingualism: Language and Cognition (2023) 1–11. https://doi.org/10.1017/S1366728923000354.
[25] N. Calvo, A.M. García, L. Manoiloff, A. Ibáñez, Bilingualism and Cognitive Reserve: A Critical Overview and a Plea for Methodological Innovations, Front. Aging Neurosci. 7 (2016). https://doi.org/10.3389/fnagi.2015.00249.
[26] T. Voits, V. DeLuca, J. Hao, K. Elin, J. Abutalebi, J.A. Duñabeitia, G. Berglund, A. Gabrielsen, J. Rook, H. Thomsen, P. Waagen, J. Rothman, Degree of multilingual engagement modulates resting state oscillatory activity across the lifespan, Neurobiology of Aging 140 (2024) 70–80. https://doi.org/10.1016/j.neurobiolaging.2024.04.009.
[27] G.M. McKhann, D.S. Knopman, H. Chertkow, B.T. Hyman, C.R. Jack Jr., C.H. Kawas, W.E. Klunk, W.J. Koroshetz, J.J. Manly, R. Mayeux, R.C. Mohs, J.C. Morris, M.N. Rossor, P. Scheltens, M.C. Carrillo, B. Thies, S. Weintraub, C.H. Phelps, The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimer’s & Dementia 7 (2011) 263–269. https://doi.org/10.1016/j.jalz.2011.03.005.
[28] C.R. Jack Jr., J.S. Andrews, T.G. Beach, T. Buracchio, B. Dunn, A. Graf, O. Hansson, C. Ho, W. Jagust, E. McDade, J.L. Molinuevo, O.C. Okonkwo, L. Pani, M.S. Rafii, P. Scheltens, E. Siemers, H.M. Snyder, R. Sperling, C.E. Teunissen, M.C. Carrillo, Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup, Alzheimer’s & Dementia 20 (2024) 5143–5169. https://doi.org/10.1002/alz.13859.
[29] R.B. Postuma, D. Berg, M. Stern, W. Poewe, C.W. Olanow, W. Oertel, J. Obeso, K. Marek, I. Litvan, A.E. Lang, G. Halliday, C.G. Goetz, T. Gasser, B. Dubois, P. Chan, B.R. Bloem, C.H. Adler, G. Deuschl, MDS clinical diagnostic criteria for Parkinson’s disease, Movement Disorders 30 (2015) 1591–1601. https://doi.org/10.1002/mds.26424.
[30] Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease, The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and recommendations, Movement Disorders 18 (2003) 738–750. https://doi.org/10.1002/mds.10473.
[31] R. Reilmann, B.R. Leavitt, C.A. Ross, Diagnostic criteria for Huntington’s disease based on natural history, Movement Disorders 29 (2014) 1335–1341. https://doi.org/10.1002/mds.26011.
[32] C.M. Considine, C.M. Eddy, S.A. Frank, S.K. Kostyk, M. Oosterloo, A. Killoran, E. Furr Stimming, M. Dose, T. Cruickshank, T.D. Bird, L. Vetter, A. Arnesen, J. Valvano, H.W. Lange, D.O. Claassen, Improving the Clinical Diagnostic Criteria for Genetically Confirmed Adult-Onset Huntington Disease, Neurology Clinical Practice 15 (2025) e200427. https://doi.org/10.1212/CPJ.0000000000200427.
[33] K. Kieburtz, J.B. Penney, P. Como, N. Ranen, I. Shoulson, A. Feigin, D. Abwender, J.T. Greenamyre, D. Higgins, F.J. Marshall, J. Goldstein, K. Steinberg, C. Shih, I. Richard, C. Hickey, C. Zimmerman, C. Orme, K. Claude, D. Oakes, D.S. Sax, A. Kim, S. Hersch, R. Jones, A. Auchus, D. Olsen, C. Bissey-Black, A. Rubin, R. Schwartz, R. Dubinsky, W. Mallonee, C. Gray, N. Godfrey, G. Suter, K.M. Shannon, G.T. Stebbins, J.A. Jaglin, K. Marder, S. Taylor, E. Louis, C. Moskowitz, D. Thorne, N. Zubin, N. Wexler, M.R. Swenson, J. Paulsen, N. Swerdlow, R. Albin, C. Wernette, F. Walker, V. Hunt, R. Roos, A.B. Young, W. Koroshetz, E. Bird, R. Meyers, M. Cudkowicz, M. Guttman, J. StCyr, J. Burkholder, A. Lundin, T. Ashizawa, J. Jankovic, E. Siemers, K. Quaid, W. Martin, J. SanchezRamos, A. Facca, G. Rey, O. Suchowersky, G. Rohs, M.L. Klinek, C. Ross, F.W. Bylsma, M. Sherr, M. Hayden, L. Raymond, C. Clark, B. Kremer, Unified Huntington’s disease rating scale: Reliability and consistency, Movement Disorders 11 (1996) 136–142. https://doi.org/10.1002/mds.870110204.
[34] A.J. Thompson, B.L. Banwell, F. Barkhof, W.M. Carroll, T. Coetzee, G. Comi, J. Correale, F. Fazekas, M. Filippi, M.S. Freedman, K. Fujihara, S.L. Galetta, H.P. Hartung, L. Kappos, F.D. Lublin, R.A. Marrie, A.E. Miller, D.H. Miller, X. Montalban, E.M. Mowry, P.S. Sorensen, M. Tintoré, A.L. Traboulsee, M. Trojano, B.M.J. Uitdehaag, S. Vukusic, E. Waubant, B.G. Weinshenker, S.C. Reingold, J.A. Cohen, Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria, The Lancet Neurology 17 (2018) 162–173. https://doi.org/10.1016/S1474-4422(17)30470-2.
[35] A.L. Anwyl-Irvine, J. Massonnié, A. Flitton, N. Kirkham, J.K. Evershed, Gorilla in our midst: An online behavioral experiment builder, Behav Res 52 (2020) 388–407. https://doi.org/10.3758/s13428-019-01237-x.
[36] J.A. Duñabeitia, A. Baciero, K. Antoniou, M. Antoniou, E. Ataman, C. Baus, M. Ben-Shachar, O.C. Çağlar, J. Chromý, M. Comesaña, M. Filip, D.F. Đurđević, M.G. Dowens, A. Hatzidaki, J. Januška, Z. Jusoh, R. Kanj, S.Y. Kim, B. Kırkıcı, A. Leminen, T. Lohndal, N.T. Yap, H. Renvall, J. Rothman, P. Royle, M. Santesteban, Y. Sevilla, N. Slioussar, A. Vaughan-Evans, Z. Wodniecka, S. Wulff, C. Pliatsikas, The Multilingual Picture Database, Sci Data 9 (2022) 431. https://doi.org/10.1038/s41597-022-01552-7.
[37] P. Li, F. Zhang, A. Yu, X. Zhao, Language History Questionnaire (LHQ3): An enhanced tool for assessing multilingual experience, Bilingualism: Language and Cognition 23 (2020) 938–944. https://doi.org/10.1017/S1366728918001153.
[38] J.W. Gullifer, D. Titone, Characterizing the social diversity of bilingualism using language entropy, Bilingualism 23 (2020) 283–294. https://doi.org/10.1017/S1366728919000026.
[39] M. Nucci, D. Mapelli, S. Mondini, Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve, Aging Clin Exp Res 24 (2012) 218–226. https://doi.org/10.1007/BF03654795.
[40] A. Artemiadis, C. Bakirtzis, P. Ifantopoulou, P. Zis, P. Bargiotas, N. Grigoriadis, G. Hadjigeorgiou, The role of cognitive reserve in multiple sclerosis: A cross-sectional study in 526 patients, Multiple Sclerosis and Related Disorders 41 (2020) 102047. https://doi.org/10.1016/j.msard.2020.102047.
[41] G. Livingston, J. Huntley, K.Y. Liu, S.G. Costafreda, G. Selbæk, S. Alladi, D. Ames, S. Banerjee, A. Burns, C. Brayne, N.C. Fox, C.P. Ferri, L.N. Gitlin, R. Howard, H.C. Kales, M. Kivimäki, E.B. Larson, N. Nakasujja, K. Rockwood, Q. Samus, K. Shirai, A. Singh-Manoux, L.S. Schneider, S. Walsh, Y. Yao, A. Sommerlad, N. Mukadam, Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission, The Lancet 404 (2024) 572–628. https://doi.org/10.1016/S0140-6736(24)01296-0.
[42] M. Anatürk, T. Kaufmann, J.H. Cole, S. Suri, L. Griffanti, E. Zsoldos, N. Filippini, A. Singh-Manoux, M. Kivimäki, L.T. Westlye, K.P. Ebmeier, A.-M.G. de Lange, Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging, Human Brain Mapping 42 (2021) 1626–1640. https://doi.org/10.1002/hbm.25316.
[43] K.H. Gehlich, J. Beller, B. Lange-Asschenfeldt, W. Köcher, M.C. Meinke, J. Lademann, Fruit and vegetable consumption is associated with improved mental and cognitive health in older adults from non-Western developing countries, Public Health Nutrition 22 (2019) 689–696. https://doi.org/10.1017/S1368980018002525.
[44] Z. Huang, Y. Guo, Y. Ruan, S. Sun, T. Lin, J. Ye, J. Li, L. He, S. Wang, Y. Shi, F. Wu, Associations of Lifestyle Factors With Cognition in Community-Dwelling Adults Aged 50 and Older: A Longitudinal Cohort Study, Front. Aging Neurosci. 12 (2020). https://doi.org/10.3389/fnagi.2020.601487.
[45] S.M. Skevington, M. Lotfy, K.A. O’Connell, The World Health Organization’s WHOQOL-BREF quality of life assessment: Psychometric properties and results of the international field trial. A Report from the WHOQOL Group, Qual Life Res 13 (2004) 299–310. https://doi.org/10.1023/B:QURE.0000018486.91360.00.
[46] I. Bjelland, A.A. Dahl, T.T. Haug, D. Neckelmann, The validity of the Hospital Anxiety and Depression Scale: An updated literature review, Journal of Psychosomatic Research 52 (2002) 69–77. https://doi.org/10.1016/S0022-3999(01)00296-3.
[47] Z.S. Nasreddine, N.A. Phillips, V. Bédirian, S. Charbonneau, V. Whitehead, I. Collin, J.L. Cummings, H. Chertkow, The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment, Journal of the American Geriatrics Society 53 (2005) 695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.
[48] Z. Shao, E. Janse, K. Visser, A.S. Meyer, What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults, Front. Psychol. 5 (2014). https://doi.org/10.3389/fpsyg.2014.00772.
[49] J. Zhong, W. Huang, K. Kang, J.A. Duñabeitia, C. Pliatsikas, H. Zhang, Standardizing norms for 1286 colored pictures in Cantonese, Behavior Research Methods (2024). https://doi.org/10.3758/s13428-024-02362-y.
[50] D. Wechsler, Wechsler Adult Intelligence Scale--Third Edition, (2019). https://doi.org/10.1037/t49755-000.
[51] G. Chierchia, D. Fuhrmann, L.J. Knoll, B.P. Pi-Sunyer, A.L. Sakhardande, S.-J. Blakemore, The matrix reasoning item bank (MaRs-IB): novel, open-access abstract reasoning items for adolescents and adults, Royal Society Open Science 6 (2019) 190232. https://doi.org/10.1098/rsos.190232.
[52] A.L. Benton, N.R. Varney, K. deS. Hamsher, Visuospatial Judgment: A Clinical Test, Archives of Neurology 35 (1978) 364–367. https://doi.org/10.1001/archneur.1978.00500300038006.
[53] P.H.R. Silva, C.T. Spedo, A.A. Barreira, R.F. Leoni, Symbol Digit Modalities Test adaptation for Magnetic Resonance Imaging environment: A systematic review and meta-analysis, Multiple Sclerosis and Related Disorders 20 (2018) 136–143. https://doi.org/10.1016/j.msard.2018.01.014.
[54] N. Alrwaita, C. Houston-Price, L. Meteyard, T. Voits, C. Pliatsikas, Executive functions are modulated by the context of dual language use: diglossic, bilingual and monolingual older adults, Bilingualism: Language and Cognition 27 (2024) 178–203. https://doi.org/10.1017/S1366728923000056.
[55] B. Fischl, FreeSurfer, NeuroImage 62 (2012) 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021.
[56] J.A.E. Anderson, J.G. Grundy, C.L. Grady, F.I.M. Craik, E. Bialystok, Bilingualism contributes to reserve and working memory efficiency: Evidence from structural and functional neuroimaging, Neuropsychologia 163 (2021) 108071. https://doi.org/10.1016/j.neuropsychologia.2021.108071.
[57] P. Schmidt, Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging, Text.PhDThesis, Ludwig-Maximilians-Universität München, 2017. https://edoc.ub.uni-muenchen.de/20373/ (accessed February 13, 2025).
[58] K.J. Friston, Statistical Parametric Mapping, in: R. Kötter (Ed.), Neuroscience Databases: A Practical Guide, Springer US, Boston, MA, 2003: pp. 237–250. https://doi.org/10.1007/978-1-4615-1079-6_16.
[59] C.F. Beckmann, M. DeLuca, J.T. Devlin, S.M. Smith, Investigations into resting-state connectivity using independent component analysis, Phil. Trans. R. Soc. B 360 (2005) 1001–1013. https://doi.org/10.1098/rstb.2005.1634.
[60] C.F. Beckmann, S.M. Smith, Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging, IEEE Trans. Med. Imaging 23 (2004) 137–152. https://doi.org/10.1109/TMI.2003.822821.
[61] C. Pliatsikas, G. Luk, Executive control in bilinguals: A concise review on fMRI studies, Bilingualism 19 (2016) 699–705. https://doi.org/10.1017/S1366728916000249.
[62] I. Liampas, F. Danga, P. Kyriakoulopoulou, V. Siokas, P. Stamati, L. Messinis, E. Dardiotis, G. Nasios, The Contribution of Functional Near-Infrared Spectroscopy (fNIRS) to the Study of Neurodegenerative Disorders: A Narrative Review, Diagnostics 14 (2024) 663. https://doi.org/10.3390/diagnostics14060663.
[63] C. Pliatsikas, Examining functional Near-Infrared Spectroscopy as a tool to study brain function in bilinguals, Front. Lang. Sci. 3 (2024). https://doi.org/10.3389/flang.2024.1471133.
[64] H. Niu, Z. Zhu, M. Wang, X. Li, Z. Yuan, Y. Sun, Y. Han, Abnormal dynamic functional connectivity and brain states in Alzheimer’s diseases: functional near-infrared spectroscopy study, Neurophotonics 6 (2019) 025010. https://doi.org/10.1117/1.NPh.6.2.025010.