Arakawa, A., and W. H. Schubert, 1974a: Interaction of a cumulus cloud ensemble with the 730
large-scale environment, Part I. J. Atmos. Sci., 31, 674–701, https://doi.org/https://doi.org/10. 731
1175/1520-0469(1974)031,0674:IOACCE.2.0.CO;2. 732
Arakawa, A., and W. H. Schubert, 1974b: Interaction of a cumulus cloud ensemble with the 733
large-scale environment, Part I. J. Atmos. Sci., 31, 674–701, https://doi.org/https://doi.org/10. 734
1175/1520-0469(1974)031,0674:IOACCE.2.0.CO;2. 735
Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection 736
scheme for regional and global models. Quarterly Journal of the Royal Meteorological Society, 737
127 (573), 869–886, https://doi.org/https://doi.org/10.1002/qj.49712757309. 738
Bechtold, P., M. K¨ohler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and 739
G. Balsamo, 2008: Advances in simulating atmospheric variability with the ecmwf model: 740
From synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 741
134 (634), 1337–1351, https://doi.org/https://doi.org/10.1002/qj.289. 742
Bera, S., and T. V. Prabha, 2019: Parameterization of entrainment rate and mass-flux in continental 743
744 cumulus clouds: Inference from large eddy simulation. Journal of Geophysical Research:
Atmospheres, 124, 13 127–13 139, https://doi.org/https://doi.org/10.1029/2019JD031078. 745
Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261– 746
268, https://doi.org/10.1038/NGEO2398. 747
35
Bretherton, C., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus 748
convection and its application to marine subtropical cloud-topped boundary layers. Part I: 749
Description and 1d results. Mon. Wea. Rev., 132, 864–880, https://doi.org/https://doi.org/10. 750
1175/1520-0493(2004)132⟨0864:ANPFSC⟩2.0.CO;2. 751
B¨oing, S. J., A. P. Siebesma, K. J. D., and J. H. J. J., 2012: Detrainment in deep convection. 752
Geophys. Res. Lett., 39, L20 816, https://doi.org/https://doi.org/10.1029/2012GL053735. 753
Carpenter, R. L. J., K. K. Droegemeier, and A. A. Blyth, 1998: Entrainment and detrainment 754
in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci., 755
55, 3434–3455, https://doi.org/https://doi.org/10.1175/1520-0469(1998)055⟨3440:EADINS⟩2. 756
0.CO;2. 757
Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude 758
dynamics: a review. Curr Clim Change Rep, 1, 94–102, https://doi.org/https://doi.org/10.1007/ 759
s40641-015-0010-x. 760
Clark, P. A., L. Denby, G. A. Efstathiou, T. L. Webb, and V. Nair, 2025: Mixed offline/online 761
trajectories 762 and object-tracking for process research. Journal of Advances in Modeling Earth
Systems. 763
Daleu, C. L., R. S. Plant, A. J. Stirling, and M. Whitall, 2023: Evaluating the comorph-a 764
parametrization using idealized simulations of the two-way coupling between convection and 765
large-scale dynamics. Quarterly Journal of the Royal Meteorological Society, 149, 3087–3109, 766
https://doi.org/https://doi.org/10.1002/qj.4547. 767
Davies-Jones, R., 2008: An expression for effective buoyancy in surroundings with horizon- 768
tal density gradients. J. Atmos. Sci., 60, 2922–2925, https://doi.org/https://doi.org/10.1175/ 769
1520-0469(2003)060⟨2922:AEFEBI⟩2.0.CO;2. 770
Dawe, J. T., and P. H. Austin, 2011a: The influence of the cloud shell on tracer budget measurments 771
of les cloud entrainment. J. Atmos. Sci., 68, 2909–2920, https://doi.org/https://doi.org/10.1175/ 772
2011JAS3658.1. 773
36
Dawe, J. T., and P. H.Austin, 2011b: Interpolation of les cloud surfaces for use in direct calculations 774
of entrainment and detrainment. Mon. Wea. Rev., 139, 444–456, https://doi.org/https://doi.org/ 775
10.1175/2010MWR3473.1. 776
de Roode, S. R., A. P. Siebesma, H. J. J. Jonker, and Y. de Voogd, 2012: Parameterization of 777
the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 2424–2436, 778
https://doi.org/https://doi.org/10.1175/MWR-D-11-00277.1. 779
de Rooy, W. C., and A. Pier Siebesma, 2010: Analytical expressions for entrainment and de- 780
trainment in cumulus convection. Quarterly Journal of the Royal Meteorological Society, 136, 781
1216–1227, https://doi.org/https://doi.org/10.1002/qj.640. 782
de Rooy,W. C., and A. P. Siebesma, 2009: Asimple parameterization for detrainment in shallowcu- 783
mulus. Mon.Wea. Rev., 136, 560–576, https://doi.org/https://doi.org/10.1175/2007MWR2201.1. 784
de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: an 785
overview. Quart. J. Roy. Meteor. Soc., 139, 1–19, https://doi.org/https://doi.org/10.1002/qj.1959. 786
Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and 787
P. 788 M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quarterly
Journal of the Royal Meteorological Society, 130, 3055–3079, https://doi.org/https://doi.org/10. 789
1256/qj.03.130. 790
Derbyshire, S. H., A. V. Maidens, S. F. Milton, R. A. Stratton, and M. R. Willett, 2011: Adaptive 791
792 detrainment in a convective parametrization. Quarterly Journal of the Royal Meteorological
Society, 137, 1856–1871, https://doi.org/https://doi.org/10.1002/qj.875. 793
794 Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J.
Atmos. Sci., 48, 2313–2335, https://doi.org/https://doi.org/10.1175/1520-0469(1991)048⟨2313: 795
ASFRCC⟩2.0.CO;2. 796
Emanuel, K. A., 1994: Atmospheric convection. Oxford University Press, 580pp. 797
Eytan, E., Y. Arieli, A. Khain, O. Altaratz, M. Pinsky, E. Gavze, and I. Koren, 2024: The role of the 798
799 toroidal vortex in cumulus clouds’ entrainment and mixing. Journal of Geophysical Research:
Atmospheres, 129, https://doi.org/https://doi.org/10.1029/2023JD039493. 800
37
Genio, A. D. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental 801
convection. J. Climate, 23, 2722–2738, https://doi.org/https://doi.org/10.1175/2009JCLI3340.1. 802
Gheusi, F., and J. Stein, 2002: Lagrangian description of airflows using eulerian passive trac- 803
ers. Quart. J. Roy. Meteor. Soc., 128 (579), 337–360, https://doi.org/https://doi.org/10.1256/ 804
00359000260498914. 805
Gregory, 806 D., 2001: Estimation of entrainment rate in simplemodels of convective clouds.Quarterly
Journal of the Royal Meteorological Society, 127, 53–72, https://doi.org/https://doi.org/10.1002/ 807
qj.49712757104. 808
Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation 809
of cloud ensemble characteristics and stability-dependent closure. Monthly Weather Review, 810
118 (7), 1483–1506, https://doi.org/10.1175/1520-0493(1990)118⟨1483:AMFCSW⟩2.0.CO;2. 811
Gu, J.-F., R. S. Plant, and C. E. Holloway, 2024a: Connections between sub-cloud coherent 812
structures and the life cycle of maritime shallow cumulus clouds in large eddy simulation. 813
Journal of Advances in Modeling Earth Systems, 16, e2023MS003 986, https://doi.org/https: 814
//doi.org/10.1029/2023MS003986. 815
Gu, J.-F., R. S. Plant, C. E. Holloway, and P. A. Clark, 2024b: The moist halo region around shallow 816
cumulus clouds in large eddy simulations. Quarterly Journal of the Royal Meteorological Society, 817
150, 1501–1517, https://doi.org/https://doi.org/10.1002/qj.4656. 818
Gu, J.-F., R. S. Plant, C. E. Holloway, and T. R. Jones, 2021: Composited structure of 819
non-precipitating shallow cumulus clouds. Quart. J. Roy. Meteor. Soc., 147, 2818–2833, 820
https://doi.org/https://doi.org/10.1002/qj.4101. 821
Gu, J.-F., R. S. Plant, C. E. Holloway, T. R. Jones, A. Stirling, P. A. Clark, S. J.Woolnough, and T. L. 822
Webb, 2020a: Evaluation of the Bulk Mass Flux Formulation Using Large-Eddy Simulations. 823
J. Atmos. Sci., 77, 2115–2137, https://doi.org/https://doi.org/10.1175/JAS-D-19-0224.1. 824
Gu, J.-F., R. Stephen Plant, C. E. Holloway, and M. R. Muetzelfeldt, 2020b: Pressure drag for 825
shallow cumulus clouds: From thermals to the cloud ensemble. Geophysical Research Letters, 826
47 (22), e2020GL090 460, https://doi.org/https://doi.org/10.1029/2020GL090460. 827
38
Helfer, K. C., L. Nuijens, S. R. de Roode, and A. P. Siebesma, 2020: How wind shear affects 828
trade-wind cumulus convection. Journal of Advances in Modeling Earth Systems, 12 (12), 829
e2020MS002 183, https://doi.org/https://doi.org/10.1029/2020MS002183. 830
Hernandez-Deckers, D., and S. C. Sherwood, 2016: Anumerical investigation of cumulus thermals. 831
J. Atmos. Sci., 73, 4117–4136, https://doi.org/10.1175/JAS-D-15-0385.1. 832
Hernandez-Deckers, D., and S. C. Sherwood, 2018: On the role of entrainment in the fate of 833
cumulus thermals. J. Atmos. Sci., 75, 3911–3924, https://doi.org/10.1175/JAS-D-18-0077.1. 834
Heus, T., G. van Dijk, H. J. J. Jonker, and H. E. A. van den Akker, 2008: Mixing in shallow cumulus 835
clouds studied by lagrangian particle tracking. J. Atmos. Sci., 65, 2581–2597, https://doi.org/ 836
https://doi.org/10.1175/2008JAS2572.1. 837
Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: 838
Influence on triggering, updraft properties, and model climate. Mon.Wea. Rev., 131, 2765–2778, 839
https://doi.org/https://doi.org/10.1175/1520-0493(2003)131⟨2765:ANSMFM⟩2.0.CO;2. 840
Jeevanjee, N., and D. M. Romps, 841 2016: Effective buoyancy at the surface and aloft. Quart. J. Roy.
Meteor. Soc., 142 (695), 811–820, https://doi.org/https://doi.org/10.1002/qj.2683. 842
Kain, J. S., and J. L. Fritsch, 1990: A one-dimensional entraining/detraining plume model and 843
its application in convective parameterization. J. Atmos. Sci., 47, 2784–2808, https://doi.org/ 844
https://doi.org/10.1175/1520-0469(1990)047⟨2784:AODEPM⟩2.0.CO;2. 845
Kao, F.-S., Y.-H. Kuo, and C.-M. Wu, 2025: Diagnosing nonlocal vertical acceleration in moist 846
convection using a large-eddy simulation. J. Adv. Model. Earth Syst., 17, e2024MS004 636, 847
https://doi.org/https://doi.org/10.1029/2024MS004636. 848
Kirshbaum, D. J., H. Morrison, and J. M. Peters, 2024: Simplified approximations of direct 849
cumulus entrainment and detrainment. J. Atmos. Sci., 82, 1049–1066, https://doi.org/https: 850
//doi.org/10.1175/JAS-D-23-0232.1. 851
Kuo, Y.-H., and J. D. Neelin, 2025: Anelastic convective entities. part I: Formulation and impli- 852
cation for nighttime convection. J. Atmos. Sci., 82, 599–623, https://doi.org/https://doi.org/10. 853
1175/JAS-D-23-0214.1. 854
39
Lecoanet, D., and N. Jeevanjee, 2019: Entrainment in resolved, dry thermals. J. Atmos. Sci., 76, 855
3785–3801, https://doi.org/https://doi.org/10.1175/JAS-D-18-0320.1. 856
Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 2153–3490, 857
https://doi.org/http://dx.doi.org/10.1111/j.2153-3490.1962.tb00128.x. 858
Lin, C., 2019: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. 859
part ii: Entrainment profiles. J. Atmos. Sci., 56, 3736–3748, https://doi.org/https://doi.org/10. 860
1175/1520-0469(1999)056⟨3736:SBPOCE⟩2.0.CO;2. 861
Lin, C., and A. Arakawa, 1997a: The macroscopic entrainment processes of simulated cumulus 862
ensemble. Part I: Entrainment sources. J. Atmos. Sci., 54, 1027–1043, https://doi.org/https: 863
//doi.org/10.1175/1520-0469(1997)054⟨1027:TMEPOS⟩2.0.CO;2. 864
Lin, C., and A. Arakawa, 1997b: The macroscopic entrainment processes of simulated cumu- 865
lus ensemble. Part II: Testing the entraining-plume model. J. Atmos. Sci., 54, 1044–1053, 866
https://doi.org/https://doi.org/10.1175/1520-0469(1997)054⟨1044:TMEPOS⟩2.0.CO;2. 867
Lu, C., Y. Liu, S. S. Yum, S. Niu, and S. Endo, 2012: A new approach for estimating entrainment 868
rate in cumulus clouds. Geophysical Research Letters, 39, L04 802, https://doi.org/https://doi. 869
org/10.1029/2011GL050546. 870
Lu, C., Y. Liu, G. J. Zhang, X.Wu, S. Endo, L. Cao, Y. Li, and X. Guo, 2016: Improving parameter- 871
ization of entrainment rate for shallowconvection with aircraft measurements and large eddy sim- 872
ulation. J. Atmos. Sci., 73, 761–773, https://doi.org/https://doi.org/10.1175/JAS-D-15-0050.1. 873
Lu, C., and Coauthors, 2018: Observational relationship between entrainment rate and environmen- 874
875 tal relative humidity and implications for convection parameterization. Geophysical Research
Letters, 45, 13,495–13,504, https://doi.org/https://doi.org/10.1029/2018GL080264. 876
Maason-Delmotte, V., and Coauthors, 2021: Ipcc, 2021: Climate change 2021: The physical 877
878 science basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, https://doi.org/https://doi.org/10.1017/9781009157896. 879
Markowski, P., andY. Richardson, 2011: Mesoscale meteorology in midlatitudes.Wiley-Blackwell, 880
407p. 881
40
McKim, B., N. Jeevanjee, and D. Lecoanet, 2019: Buoyancy-driven entrainment in dry thermals. 882
Q. J. R. Meteorol. Soc., 146, 415–425, https://doi.org/https://doi.org/10.1002/qj.3683. 883
Morrison, H., 2016a: Impacts of updraft size and dimensionality on the perturbation pressure and 884
vertical 885 velocity in cumulus convection. Part I: Simple, generalized analytic solutions. J. Atmos.
Sci., 73, 1441–1454, https://doi.org/https://doi.org/10.1175/JAS-D-15-0040.1. 886
Morrison, H., 2016b: Impacts of updraft size and dimensionality on the perturbation pressure 887
and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical 888
solutions and fully dynamical simulations. J. Atmos. Sci., 73, 1455–1480, https://doi.org/https: 889
//doi.org/10.1175/JAS-D-15-0041.1. 890
Morrison, H., 2024: Entrainment, detrainment, and dilution of dry and moist atmospheric thermals. 891
J. Atmos. Sci., 82, 361–389, https://doi.org/https://doi.org/10.1175/JAS-D-24-0078. 892
Morrison, H., and J. M. Peters, 2018: Theoretical expressions for the ascent rate of moist deep 893
convective thermals. Journal of the Atmospheric Sciences, 75, 1699–1719, https://doi.org/https: 894
//doi.org/10.1175/JAS-D-17-0295.1. 895
Neggers, R. A., A. P. Siebesma, and H. J. J. Jonker, 2002: A multiparcel model for shallow 896
cumulus convection. Journal of the Atmospheric Sciences, 59, 1655–1668, https://doi.org/https: 897
//doi.org/10.1175/1520-0469(2002)059⟨1655:ammfsc⟩2.0.co;2. 898
Neggers, R. A. J., 2015: Exploring bin-macrophysics models for moist convective transport and 899
clouds. Journal of Advances in Modeling Earth Systems, 7 (4), 2079–2104, https://doi.org/ 900
https://doi.org/10.1002/2015MS000502. 901
Neggers, R. A. J., P. G. Duynkerke, and S. M. A. Rodts, 2003: Shallow cumulus convection: A 902
903 validation of large-eddy simulation against aircraft and landsat observations. Q. J. R. Meteorol.
Soc., 129, 2671–2696, https://doi.org/https://doi.org/10.1256/qj.02.93. 904
Neggers, R. A. J., M. K¨ohler, and A. C. M. Beljaars, 2009: A dual mass flux framework for 905
boundary layer convection. Part I: Transport. J. Atmos. Sci., 66, 1465–1487, https://doi.org/ 906
https://doi.org/10.1175/2008JAS2635.1. 907
Paluch, I. R., 1979: Entrainment mechanism in colorado cumuli. J. Atmos. Sci., 36, 2467–2478, 908
https://doi.org/https://doi.org/10.1175/1520-0469(1979)036⟨2467:TEMICC⟩2.0.CO;2. 909
41
Park, S., 2014: 910 A unified convection scheme (unicon). part i: Formulation. Journal of the Atmospheric
Sciences, 71, 3902–3930, https://doi.org/https://doi.org/10.1175/JAS-D-13-0233.1. 911
Peters, J. M., 2016: The impact of effective buoyancy and dynamic pressure forcing on vertical 912
velocities within two-dimensional updrafts. Journal of the Atmospheric Sciences, 73, 4531–4551, 913
https://doi.org/https://doi.org/10.1175/JAS-D-16-0016.1. 914
Peters, J. M., H. Morrison, G. J. Zhang, and S. W. Powell, 2021: Improving the physical basis 915
for updraft dynamics in deep convection parameterizations. J. Adv. Model. Earth Syst., 13, 916
e2020MS002 282, https://doi.org/https://doi.org/10.1029/2020MS002282. 917
Plant, R. S., 2010: A review of the theoretical basis for bulk mass flux convective parameterization. 918
Atmospheric Chemistry and Physics, 10 (8), 3529–3544, https://doi.org/https://doi.org/10.5194/ 919
acp-10-3529-2010. 920
Plant, R. S., and J. I. Yano, 2015a: Parameterization of atmospheric convection. Volume 1: 921
Theoretical background and formulation. World Scientific, Imperial College Press, 515pp. 922
Plant, R. S., and J. I.Yano, 2015b: Parameterization of atmospheric convection. Volume 2: Current 923
issues and new theories. World Scientific, Imperial College Press, 617pp. 924
Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for non-precipitating cumulus 925
clouds. J. Atmos. Sci., 43, 2708–2718, https://doi.org/https://doi.org/https://doi.org/10.1175/ 926
1520-0469(1986)0432708:ASMMFN2.0.CO;2. 927
Reuter, G. W., and M. K. Yau, 1987: Mixing mechanisms in cumulus congestus clouds. part 928
ii: Numerical simulations. J. Atmos. Sci., 44, 798–827, https://doi.org/https://doi.org/10.1175/ 929
1520-0469(1987)044⟨0798:MMICCC⟩2.0.CO;2. 930
Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 1908–1927, 931
https://doi.org/https://doi.org/10.1175/2010JAS3371.1. 932
Romps, D. M., and A. B. Charn, 2015: Sticky thermals: evidence for a dominant balance 933
between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 2890–2901, https://doi.org/ 934
https://doi.org/10.1175/JAS-D-15-0042.1. 935
42
Savre, J., 2022: What controls local entrainment and detrainment rates in simulated shallowconvec- 936
tion? J. Atmos. Sci., 79, 3065–3082, https://doi.org/https://doi.org/10.1175/JAS-D-21-0341.1. 937
Schneider, S. H., 1972: Cloudiness as a global climatic feedback mechanism: The effects on the 938
939 radiation balance and surface temperature of variations in cloudiness. Journal of the Atmospheric
Sciences, 29, 1413–1422, https://doi.org/https://doi.org/10.1175/1520-0469(1972)029⟨1413: 940
CAAGCF⟩2.0.CO;2. 941
Schneider, T., J. Teixeira, C. S. Bretherton, F. Brient, K. G. Pressel, C. Sch¨ar, and A. P. Siebesma, 942
2017: Climate goals and computing the future of clouds. Nature Climate Change, 7, 3–5, 943
https://doi.org/https://doi.org/10.1038/nclimate3190. 944
Sherwood, S., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced 945
to atmospheric convective mixing. Nature, 505, 31–42, https://doi.org/https://doi.org/10.1038/ 946
nature12829. 947
Sherwood, S. C., D. Hernandaz-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and 948
cumulus entrainment paradox. J. Atmos. Sci., 70, 2426–2442, https://doi.org/https://doi.org/10. 949
1175/JAS-D-12-0220.1. 950
Siebesma, A. P., S. Bony, C. Jakob, and B. Stevens(eds), 2020: Clouds and climate: Climate 951
science’s greatest challenge. CambridgeUniversity Press, https://doi.org/https://doi.org/10.1017/ 952
9781107447738. 953
Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow 954
cumulus convection. Journal of the Atmospheric Sciences, 52, 650–666, https://doi.org/https: 955
//doi.org/10.1175/1520-0469(1995)052⟨0650:EOPAFS⟩2.0.CO;2. 956
Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux 957
approach for the convective boundary layer. J. Atmos. Sci., 64, 1230–1248, https://doi.org/ 958
https://doi.org/10.1175/JAS3888.1. 959
Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shal- 960
low cumulus convection. J. Atmos. Sci., 60, 1201–1219, https://doi.org/https://doi.org/10.1175/ 961
1520-0469(2003)60,1201:ALESIS.2.0.CO;2. 962
43
963 Simpson, J., 1971: On cumulus entrainment and one-dimensional models. Journal of the
Atmospheric Sciences, 28, 449–455, https://doi.org/https://doi.org/10.1175/1520-0469(1971) 964
028⟨0449:oceaod⟩2.0.co;2. 965
Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 966
97, 471–489, https://doi.org/https://doi.org/10.1175/1520-0493(1969)097⟨0471:MOPCT⟩2.3. 967
CO;2. 968
Smagorinsky, J., 1963: General circulation experiments with the primitive equation: I. the basic ex- 969
periment. Mon. Wea. Rev., 91, 99–164, https://doi.org/https://doi.org/10.1175/1520-0493(1963) 970
091⟨0099:GCEWTP⟩2.3.CO;2. 971
Smith, R. K., 1997: The physics and parameterization of moist atmospheric convection. Springer, 972
507pp, https://doi.org/https://doi.org/10.1007/978-94-015-8828-7. 973
Stanfield, R. E., H. Su, J. H. Jiang, S. R. Freitas, A. M. Molod, Z. J. Luo, L. Huang, and M. Luo, 974
2019: Convective entrainment rates estimated from aura co and cloudsat/calipso observations 975
and comparison with geos-5. Journal of Geophysical Research: Atmospheres, 124, 9796–9807, 976
https://doi.org/https://doi.org/10.1029/2019JD030846. 977
Stirling, A. J., and R. A. Stratton, 2012: Entrainment processes in the diurnal cycle of deep 978
convection over land. Quarterly Journal of the Royal Meteorological Society, 138, 1135–1149, 979
https://doi.org/https://doi.org/10.1002/qj.1868. 980
Tan, Z., C. M. Kaul, K. G. Pressel, Y. Cohen, T. Schneider, and J. Teixeira, 2018: An extended 981
eddy-diffusivity mass-flux scheme for unified representation of subgrid-scale turbulence and 982
convection. J. Adv. Model. Earth Syst., 10, 770–800, https://doi.org/https://doi.org/10.1002/ 983
2017MS001162. 984
985 Tarshish, N., N. Jeevanjee, and D. Lecoanet, 2018: Buoyant motion of a turbulent thermal. J.
Atmos. Sci., 75, 3233–3244, https://doi.org/https://doi.org/10.1175/JAS-D-17-0371.1. 986
987 Taylor, G. R., and M. B. Baker, 1991: Entrainment and detrainment in cumulus clouds. J. Atmos.
988 Sci., 48, 112–120, https://doi.org/https://doi.org/10.1175/1520-0469(1991)048⟨0112:EADICC⟩
2.0.CO;2. 989
44
Telford, J.W., 1975: Turbulence, entrainment, and mixing in cloud dynamics. Pure Appl. Geophys, 990
113, 1067–1084, https://doi.org/https://doi.org/10.1007/BF01592975. 991
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in 992
large-scale models. Mon. Wea. Rev., 117, 1779–1800, https://doi.org/https://doi.org/10.1175/ 993
1520-0493(1989)117⟨1779:ACMFSF⟩2.0.CO;2. 994
Turner, J. S., 1962: The ‘starting plume’ in neutral surroundings. Journal of Fluid Mechanics, 13, 995
356–368, https://doi.org/https://doi.org/10.1017/S0022112062000762. 996
von Salzen, K., and N. A. McFarlane, 2002: Parameterization of the bulk effects of lateral and 997
cloud-top entrainment in transient shallow cumulus clouds. J. Atmos. Sci., 59, 1405–1430, 998
https://doi.org/https://doi.org/10.1175/1520-0469(2002)059⟨1405:POTBEO⟩2.0.CO;2. 999
Weller, H., W. McIntyre, and D. Shipley, 2020: Multifluids for representing subgrid-scale convec- 1000
tion. Journal of Advances in Modeling Earth Systems, 12 (8), e2019MS001 966, https://doi.org/ 1001
https://doi.org/10.1029/2019MS001966. 1002
Xu, X., C. Sun, C. Lu, Y. Liu, G. J. Zhang, and Q. Chen, 2021: Factors affecting entrainment rate in 1003
deep convective clouds and parameterizations. Journal of Geophysical Research: Atmospheres, 1004
126, e2021JD034 881, https://doi.org/https://doi.org/10.1029/2021JD034881. 1005
Yano, J.-I., 1006 2014: Basic convective element: bubble or plume? A historical review. Atmos. Chem.
Phys., 14, 7019–7030, https://doi.org/10.5194/acp-14-7019-2014. 1007
Yeo, K., and D. M. Romps, 2013: Measurement of convective entrainment using La- 1008
grangian particles. Journal of the Atmospheric Sciences, 70 (1), 266–277, https://doi.org/ 1009
10.1175/jas-d-12-0144.1. 1010
Zhang, G., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization 1011
1012 of cumulus convection in the canadian climate centre general circulation model. Atmosphere-
Ocean, 33, 407–446, https://doi.org/https://doi.org/10.1080/07055900.1995.9649539. 1013
Zhao, M., and Coauthors, 2018: The gfdl global atmosphere and land model am4.0/lm4.0: 2. 1014
1015 model description, sensitivity studies, and tuning strategies. Journal of Advances in Modeling
Earth Systems, 10 (3), 735–769, https://doi.org/https://doi.org/10.1002/2017MS001209. 1016
45
Zhu, L., and Coauthors, 2021: A new approach for simultaneous estimation of entrainment 1017
and detrainment rates in non-precipitating shallow cumulus. Geophysical Research Letters, 48, 1018
e2021GL093 817, https://doi.org/https://doi.org/10.1029/2021GL093817. 1019
Zhu, L., and Coauthors, 2024: Evaluation of a new approach for entrainment and detrain- 1020
ment rate estimation. ournal of Geophysical Research: Atmospheres, 129, e2024JD040 789, 1021
https://doi.org/https://doi.org/10.1029/2024JD040789. 1022
46