Understanding the entrainment and detrainment processes in maritime shallow cumulus clouds using Lagrangian trajectories: buoyancy sorting or acceleration sorting?
Gu, J.-F.
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. Abstract/SummaryLagrangian trajectories are studied to understand the entrainment and detrainment processes in maritime shallow cumulus clouds and to examine hypotheses in convection parameterization schemes. Analysis of vertical momentum in cumulus clouds using Lagrangian trajectories and using a bulk budget approach both indicate that the overall impact of entrainment and detrainment on momentum is to accelerate the cloud updraft, rather than acting as a drag force. Following the trajectories, it is found that the entrained air has larger mean vertical velocity than the detrained air, in contradiction with the typical assumption in the mass-flux based plume models. This finding indicates the necessity for a careful treatment of the dynamical properties in the near cloud environment. Investigating the buoyancy of entraining and detraining trajectories, we find that the widely accepted “buoyancy sorting” hypothesis is not able to correctly describe both entrainment and detrainment processes, regardless of how the cloud objects are defined. Instead, whether a mixed parcel is likely to be entrained into or detrained out of the cloud depends on its vertical acceleration. More specifically, vertically accelerated parcels near cloud edge are more likely to be entrained and vertically decelerated parcels are more likely to be detrained. Thus, the “acceleration sorting” hypothesis is proposed. Decomposition of the vertical momentum budget for the entrained and detrained trajectories shows that it is the pressure gradient acceleration, especially the dynamical pressure gradient acceleration associated with the flow structure and the effective buoyancy, rather than the buoyancy alone, that dominate the “acceleration sorting”. Our results suggest that the flow structure of cloud thermals might be a potential candidate responsible for “acceleration sorting” processes during the entrainment and detrainment.
Arakawa, A., and W. H. Schubert, 1974a: Interaction of a cumulus cloud ensemble with the 730
large-scale environment, Part I. J. Atmos. Sci., 31, 674–701, https://doi.org/https://doi.org/10. 731
1175/1520-0469(1974)031,0674:IOACCE.2.0.CO;2. 732
Arakawa, A., and W. H. Schubert, 1974b: Interaction of a cumulus cloud ensemble with the 733
large-scale environment, Part I. J. Atmos. Sci., 31, 674–701, https://doi.org/https://doi.org/10. 734
1175/1520-0469(1974)031,0674:IOACCE.2.0.CO;2. 735
Bechtold, P., E. Bazile, F. Guichard, P. Mascart, and E. Richard, 2001: A mass-flux convection 736
scheme for regional and global models. Quarterly Journal of the Royal Meteorological Society, 737
127 (573), 869–886, https://doi.org/https://doi.org/10.1002/qj.49712757309. 738
Bechtold, P., M. K¨ohler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and 739
G. Balsamo, 2008: Advances in simulating atmospheric variability with the ecmwf model: 740
From synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 741
134 (634), 1337–1351, https://doi.org/https://doi.org/10.1002/qj.289. 742
Bera, S., and T. V. Prabha, 2019: Parameterization of entrainment rate and mass-flux in continental 743
744 cumulus clouds: Inference from large eddy simulation. Journal of Geophysical Research:
Atmospheres, 124, 13 127–13 139, https://doi.org/https://doi.org/10.1029/2019JD031078. 745
Bony, S., and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261– 746
268, https://doi.org/10.1038/NGEO2398. 747
35
Bretherton, C., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus 748
convection and its application to marine subtropical cloud-topped boundary layers. Part I: 749
Description and 1d results. Mon. Wea. Rev., 132, 864–880, https://doi.org/https://doi.org/10. 750
1175/1520-0493(2004)132⟨0864:ANPFSC⟩2.0.CO;2. 751
B¨oing, S. J., A. P. Siebesma, K. J. D., and J. H. J. J., 2012: Detrainment in deep convection. 752
Geophys. Res. Lett., 39, L20 816, https://doi.org/https://doi.org/10.1029/2012GL053735. 753
Carpenter, R. L. J., K. K. Droegemeier, and A. A. Blyth, 1998: Entrainment and detrainment 754
in numerically simulated cumulus congestus clouds. Part III: Parcel analysis. J. Atmos. Sci., 755
55, 3434–3455, https://doi.org/https://doi.org/10.1175/1520-0469(1998)055⟨3440:EADINS⟩2. 756
0.CO;2. 757
Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude 758
dynamics: a review. Curr Clim Change Rep, 1, 94–102, https://doi.org/https://doi.org/10.1007/ 759
s40641-015-0010-x. 760
Clark, P. A., L. Denby, G. A. Efstathiou, T. L. Webb, and V. Nair, 2025: Mixed offline/online 761
trajectories 762 and object-tracking for process research. Journal of Advances in Modeling Earth
Systems. 763
Daleu, C. L., R. S. Plant, A. J. Stirling, and M. Whitall, 2023: Evaluating the comorph-a 764
parametrization using idealized simulations of the two-way coupling between convection and 765
large-scale dynamics. Quarterly Journal of the Royal Meteorological Society, 149, 3087–3109, 766
https://doi.org/https://doi.org/10.1002/qj.4547. 767
Davies-Jones, R., 2008: An expression for effective buoyancy in surroundings with horizon- 768
tal density gradients. J. Atmos. Sci., 60, 2922–2925, https://doi.org/https://doi.org/10.1175/ 769
1520-0469(2003)060⟨2922:AEFEBI⟩2.0.CO;2. 770
Dawe, J. T., and P. H. Austin, 2011a: The influence of the cloud shell on tracer budget measurments 771
of les cloud entrainment. J. Atmos. Sci., 68, 2909–2920, https://doi.org/https://doi.org/10.1175/ 772
2011JAS3658.1. 773
36
Dawe, J. T., and P. H.Austin, 2011b: Interpolation of les cloud surfaces for use in direct calculations 774
of entrainment and detrainment. Mon. Wea. Rev., 139, 444–456, https://doi.org/https://doi.org/ 775
10.1175/2010MWR3473.1. 776
de Roode, S. R., A. P. Siebesma, H. J. J. Jonker, and Y. de Voogd, 2012: Parameterization of 777
the vertical velocity equation for shallow cumulus clouds. Mon. Wea. Rev., 140, 2424–2436, 778
https://doi.org/https://doi.org/10.1175/MWR-D-11-00277.1. 779
de Rooy, W. C., and A. Pier Siebesma, 2010: Analytical expressions for entrainment and de- 780
trainment in cumulus convection. Quarterly Journal of the Royal Meteorological Society, 136, 781
1216–1227, https://doi.org/https://doi.org/10.1002/qj.640. 782
de Rooy,W. C., and A. P. Siebesma, 2009: Asimple parameterization for detrainment in shallowcu- 783
mulus. Mon.Wea. Rev., 136, 560–576, https://doi.org/https://doi.org/10.1175/2007MWR2201.1. 784
de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: an 785
overview. Quart. J. Roy. Meteor. Soc., 139, 1–19, https://doi.org/https://doi.org/10.1002/qj.1959. 786
Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and 787
P. 788 M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. Quarterly
Journal of the Royal Meteorological Society, 130, 3055–3079, https://doi.org/https://doi.org/10. 789
1256/qj.03.130. 790
Derbyshire, S. H., A. V. Maidens, S. F. Milton, R. A. Stratton, and M. R. Willett, 2011: Adaptive 791
792 detrainment in a convective parametrization. Quarterly Journal of the Royal Meteorological
Society, 137, 1856–1871, https://doi.org/https://doi.org/10.1002/qj.875. 793
794 Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J.
Atmos. Sci., 48, 2313–2335, https://doi.org/https://doi.org/10.1175/1520-0469(1991)048⟨2313: 795
ASFRCC⟩2.0.CO;2. 796
Emanuel, K. A., 1994: Atmospheric convection. Oxford University Press, 580pp. 797
Eytan, E., Y. Arieli, A. Khain, O. Altaratz, M. Pinsky, E. Gavze, and I. Koren, 2024: The role of the 798
799 toroidal vortex in cumulus clouds’ entrainment and mixing. Journal of Geophysical Research:
Atmospheres, 129, https://doi.org/https://doi.org/10.1029/2023JD039493. 800
37
Genio, A. D. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental 801
convection. J. Climate, 23, 2722–2738, https://doi.org/https://doi.org/10.1175/2009JCLI3340.1. 802
Gheusi, F., and J. Stein, 2002: Lagrangian description of airflows using eulerian passive trac- 803
ers. Quart. J. Roy. Meteor. Soc., 128 (579), 337–360, https://doi.org/https://doi.org/10.1256/ 804
00359000260498914. 805
Gregory, 806 D., 2001: Estimation of entrainment rate in simplemodels of convective clouds.Quarterly
Journal of the Royal Meteorological Society, 127, 53–72, https://doi.org/https://doi.org/10.1002/ 807
qj.49712757104. 808
Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation 809
of cloud ensemble characteristics and stability-dependent closure. Monthly Weather Review, 810
118 (7), 1483–1506, https://doi.org/10.1175/1520-0493(1990)118⟨1483:AMFCSW⟩2.0.CO;2. 811
Gu, J.-F., R. S. Plant, and C. E. Holloway, 2024a: Connections between sub-cloud coherent 812
structures and the life cycle of maritime shallow cumulus clouds in large eddy simulation. 813
Journal of Advances in Modeling Earth Systems, 16, e2023MS003 986, https://doi.org/https: 814
//doi.org/10.1029/2023MS003986. 815
Gu, J.-F., R. S. Plant, C. E. Holloway, and P. A. Clark, 2024b: The moist halo region around shallow 816
cumulus clouds in large eddy simulations. Quarterly Journal of the Royal Meteorological Society, 817
150, 1501–1517, https://doi.org/https://doi.org/10.1002/qj.4656. 818
Gu, J.-F., R. S. Plant, C. E. Holloway, and T. R. Jones, 2021: Composited structure of 819
non-precipitating shallow cumulus clouds. Quart. J. Roy. Meteor. Soc., 147, 2818–2833, 820
https://doi.org/https://doi.org/10.1002/qj.4101. 821
Gu, J.-F., R. S. Plant, C. E. Holloway, T. R. Jones, A. Stirling, P. A. Clark, S. J.Woolnough, and T. L. 822
Webb, 2020a: Evaluation of the Bulk Mass Flux Formulation Using Large-Eddy Simulations. 823
J. Atmos. Sci., 77, 2115–2137, https://doi.org/https://doi.org/10.1175/JAS-D-19-0224.1. 824
Gu, J.-F., R. Stephen Plant, C. E. Holloway, and M. R. Muetzelfeldt, 2020b: Pressure drag for 825
shallow cumulus clouds: From thermals to the cloud ensemble. Geophysical Research Letters, 826
47 (22), e2020GL090 460, https://doi.org/https://doi.org/10.1029/2020GL090460. 827
38
Helfer, K. C., L. Nuijens, S. R. de Roode, and A. P. Siebesma, 2020: How wind shear affects 828
trade-wind cumulus convection. Journal of Advances in Modeling Earth Systems, 12 (12), 829
e2020MS002 183, https://doi.org/https://doi.org/10.1029/2020MS002183. 830
Hernandez-Deckers, D., and S. C. Sherwood, 2016: Anumerical investigation of cumulus thermals. 831
J. Atmos. Sci., 73, 4117–4136, https://doi.org/10.1175/JAS-D-15-0385.1. 832
Hernandez-Deckers, D., and S. C. Sherwood, 2018: On the role of entrainment in the fate of 833
cumulus thermals. J. Atmos. Sci., 75, 3911–3924, https://doi.org/10.1175/JAS-D-18-0077.1. 834
Heus, T., G. van Dijk, H. J. J. Jonker, and H. E. A. van den Akker, 2008: Mixing in shallow cumulus 835
clouds studied by lagrangian particle tracking. J. Atmos. Sci., 65, 2581–2597, https://doi.org/ 836
https://doi.org/10.1175/2008JAS2572.1. 837
Jakob, C., and A. P. Siebesma, 2003: A new subcloud model for mass-flux convection schemes: 838
Influence on triggering, updraft properties, and model climate. Mon.Wea. Rev., 131, 2765–2778, 839
https://doi.org/https://doi.org/10.1175/1520-0493(2003)131⟨2765:ANSMFM⟩2.0.CO;2. 840
Jeevanjee, N., and D. M. Romps, 841 2016: Effective buoyancy at the surface and aloft. Quart. J. Roy.
Meteor. Soc., 142 (695), 811–820, https://doi.org/https://doi.org/10.1002/qj.2683. 842
Kain, J. S., and J. L. Fritsch, 1990: A one-dimensional entraining/detraining plume model and 843
its application in convective parameterization. J. Atmos. Sci., 47, 2784–2808, https://doi.org/ 844
https://doi.org/10.1175/1520-0469(1990)047⟨2784:AODEPM⟩2.0.CO;2. 845
Kao, F.-S., Y.-H. Kuo, and C.-M. Wu, 2025: Diagnosing nonlocal vertical acceleration in moist 846
convection using a large-eddy simulation. J. Adv. Model. Earth Syst., 17, e2024MS004 636, 847
https://doi.org/https://doi.org/10.1029/2024MS004636. 848
Kirshbaum, D. J., H. Morrison, and J. M. Peters, 2024: Simplified approximations of direct 849
cumulus entrainment and detrainment. J. Atmos. Sci., 82, 1049–1066, https://doi.org/https: 850
//doi.org/10.1175/JAS-D-23-0232.1. 851
Kuo, Y.-H., and J. D. Neelin, 2025: Anelastic convective entities. part I: Formulation and impli- 852
cation for nighttime convection. J. Atmos. Sci., 82, 599–623, https://doi.org/https://doi.org/10. 853
1175/JAS-D-23-0214.1. 854
39
Lecoanet, D., and N. Jeevanjee, 2019: Entrainment in resolved, dry thermals. J. Atmos. Sci., 76, 855
3785–3801, https://doi.org/https://doi.org/10.1175/JAS-D-18-0320.1. 856
Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 2153–3490, 857
https://doi.org/http://dx.doi.org/10.1111/j.2153-3490.1962.tb00128.x. 858
Lin, C., 2019: Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. 859
part ii: Entrainment profiles. J. Atmos. Sci., 56, 3736–3748, https://doi.org/https://doi.org/10. 860
1175/1520-0469(1999)056⟨3736:SBPOCE⟩2.0.CO;2. 861
Lin, C., and A. Arakawa, 1997a: The macroscopic entrainment processes of simulated cumulus 862
ensemble. Part I: Entrainment sources. J. Atmos. Sci., 54, 1027–1043, https://doi.org/https: 863
//doi.org/10.1175/1520-0469(1997)054⟨1027:TMEPOS⟩2.0.CO;2. 864
Lin, C., and A. Arakawa, 1997b: The macroscopic entrainment processes of simulated cumu- 865
lus ensemble. Part II: Testing the entraining-plume model. J. Atmos. Sci., 54, 1044–1053, 866
https://doi.org/https://doi.org/10.1175/1520-0469(1997)054⟨1044:TMEPOS⟩2.0.CO;2. 867
Lu, C., Y. Liu, S. S. Yum, S. Niu, and S. Endo, 2012: A new approach for estimating entrainment 868
rate in cumulus clouds. Geophysical Research Letters, 39, L04 802, https://doi.org/https://doi. 869
org/10.1029/2011GL050546. 870
Lu, C., Y. Liu, G. J. Zhang, X.Wu, S. Endo, L. Cao, Y. Li, and X. Guo, 2016: Improving parameter- 871
ization of entrainment rate for shallowconvection with aircraft measurements and large eddy sim- 872
ulation. J. Atmos. Sci., 73, 761–773, https://doi.org/https://doi.org/10.1175/JAS-D-15-0050.1. 873
Lu, C., and Coauthors, 2018: Observational relationship between entrainment rate and environmen- 874
875 tal relative humidity and implications for convection parameterization. Geophysical Research
Letters, 45, 13,495–13,504, https://doi.org/https://doi.org/10.1029/2018GL080264. 876
Maason-Delmotte, V., and Coauthors, 2021: Ipcc, 2021: Climate change 2021: The physical 877
878 science basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, https://doi.org/https://doi.org/10.1017/9781009157896. 879
Markowski, P., andY. Richardson, 2011: Mesoscale meteorology in midlatitudes.Wiley-Blackwell, 880
407p. 881
40
McKim, B., N. Jeevanjee, and D. Lecoanet, 2019: Buoyancy-driven entrainment in dry thermals. 882
Q. J. R. Meteorol. Soc., 146, 415–425, https://doi.org/https://doi.org/10.1002/qj.3683. 883
Morrison, H., 2016a: Impacts of updraft size and dimensionality on the perturbation pressure and 884
vertical 885 velocity in cumulus convection. Part I: Simple, generalized analytic solutions. J. Atmos.
Sci., 73, 1441–1454, https://doi.org/https://doi.org/10.1175/JAS-D-15-0040.1. 886
Morrison, H., 2016b: Impacts of updraft size and dimensionality on the perturbation pressure 887
and vertical velocity in cumulus convection. Part II: Comparison of theoretical and numerical 888
solutions and fully dynamical simulations. J. Atmos. Sci., 73, 1455–1480, https://doi.org/https: 889
//doi.org/10.1175/JAS-D-15-0041.1. 890
Morrison, H., 2024: Entrainment, detrainment, and dilution of dry and moist atmospheric thermals. 891
J. Atmos. Sci., 82, 361–389, https://doi.org/https://doi.org/10.1175/JAS-D-24-0078. 892
Morrison, H., and J. M. Peters, 2018: Theoretical expressions for the ascent rate of moist deep 893
convective thermals. Journal of the Atmospheric Sciences, 75, 1699–1719, https://doi.org/https: 894
//doi.org/10.1175/JAS-D-17-0295.1. 895
Neggers, R. A., A. P. Siebesma, and H. J. J. Jonker, 2002: A multiparcel model for shallow 896
cumulus convection. Journal of the Atmospheric Sciences, 59, 1655–1668, https://doi.org/https: 897
//doi.org/10.1175/1520-0469(2002)059⟨1655:ammfsc⟩2.0.co;2. 898
Neggers, R. A. J., 2015: Exploring bin-macrophysics models for moist convective transport and 899
clouds. Journal of Advances in Modeling Earth Systems, 7 (4), 2079–2104, https://doi.org/ 900
https://doi.org/10.1002/2015MS000502. 901
Neggers, R. A. J., P. G. Duynkerke, and S. M. A. Rodts, 2003: Shallow cumulus convection: A 902
903 validation of large-eddy simulation against aircraft and landsat observations. Q. J. R. Meteorol.
Soc., 129, 2671–2696, https://doi.org/https://doi.org/10.1256/qj.02.93. 904
Neggers, R. A. J., M. K¨ohler, and A. C. M. Beljaars, 2009: A dual mass flux framework for 905
boundary layer convection. Part I: Transport. J. Atmos. Sci., 66, 1465–1487, https://doi.org/ 906
https://doi.org/10.1175/2008JAS2635.1. 907
Paluch, I. R., 1979: Entrainment mechanism in colorado cumuli. J. Atmos. Sci., 36, 2467–2478, 908
https://doi.org/https://doi.org/10.1175/1520-0469(1979)036⟨2467:TEMICC⟩2.0.CO;2. 909
41
Park, S., 2014: 910 A unified convection scheme (unicon). part i: Formulation. Journal of the Atmospheric
Sciences, 71, 3902–3930, https://doi.org/https://doi.org/10.1175/JAS-D-13-0233.1. 911
Peters, J. M., 2016: The impact of effective buoyancy and dynamic pressure forcing on vertical 912
velocities within two-dimensional updrafts. Journal of the Atmospheric Sciences, 73, 4531–4551, 913
https://doi.org/https://doi.org/10.1175/JAS-D-16-0016.1. 914
Peters, J. M., H. Morrison, G. J. Zhang, and S. W. Powell, 2021: Improving the physical basis 915
for updraft dynamics in deep convection parameterizations. J. Adv. Model. Earth Syst., 13, 916
e2020MS002 282, https://doi.org/https://doi.org/10.1029/2020MS002282. 917
Plant, R. S., 2010: A review of the theoretical basis for bulk mass flux convective parameterization. 918
Atmospheric Chemistry and Physics, 10 (8), 3529–3544, https://doi.org/https://doi.org/10.5194/ 919
acp-10-3529-2010. 920
Plant, R. S., and J. I. Yano, 2015a: Parameterization of atmospheric convection. Volume 1: 921
Theoretical background and formulation. World Scientific, Imperial College Press, 515pp. 922
Plant, R. S., and J. I.Yano, 2015b: Parameterization of atmospheric convection. Volume 2: Current 923
issues and new theories. World Scientific, Imperial College Press, 617pp. 924
Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for non-precipitating cumulus 925
clouds. J. Atmos. Sci., 43, 2708–2718, https://doi.org/https://doi.org/https://doi.org/10.1175/ 926
1520-0469(1986)0432708:ASMMFN2.0.CO;2. 927
Reuter, G. W., and M. K. Yau, 1987: Mixing mechanisms in cumulus congestus clouds. part 928
ii: Numerical simulations. J. Atmos. Sci., 44, 798–827, https://doi.org/https://doi.org/10.1175/ 929
1520-0469(1987)044⟨0798:MMICCC⟩2.0.CO;2. 930
Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 1908–1927, 931
https://doi.org/https://doi.org/10.1175/2010JAS3371.1. 932
Romps, D. M., and A. B. Charn, 2015: Sticky thermals: evidence for a dominant balance 933
between buoyancy and drag in cloud updrafts. J. Atmos. Sci., 72, 2890–2901, https://doi.org/ 934
https://doi.org/10.1175/JAS-D-15-0042.1. 935
42
Savre, J., 2022: What controls local entrainment and detrainment rates in simulated shallowconvec- 936
tion? J. Atmos. Sci., 79, 3065–3082, https://doi.org/https://doi.org/10.1175/JAS-D-21-0341.1. 937
Schneider, S. H., 1972: Cloudiness as a global climatic feedback mechanism: The effects on the 938
939 radiation balance and surface temperature of variations in cloudiness. Journal of the Atmospheric
Sciences, 29, 1413–1422, https://doi.org/https://doi.org/10.1175/1520-0469(1972)029⟨1413: 940
CAAGCF⟩2.0.CO;2. 941
Schneider, T., J. Teixeira, C. S. Bretherton, F. Brient, K. G. Pressel, C. Sch¨ar, and A. P. Siebesma, 942
2017: Climate goals and computing the future of clouds. Nature Climate Change, 7, 3–5, 943
https://doi.org/https://doi.org/10.1038/nclimate3190. 944
Sherwood, S., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced 945
to atmospheric convective mixing. Nature, 505, 31–42, https://doi.org/https://doi.org/10.1038/ 946
nature12829. 947
Sherwood, S. C., D. Hernandaz-Deckers, M. Colin, and F. Robinson, 2013: Slippery thermals and 948
cumulus entrainment paradox. J. Atmos. Sci., 70, 2426–2442, https://doi.org/https://doi.org/10. 949
1175/JAS-D-12-0220.1. 950
Siebesma, A. P., S. Bony, C. Jakob, and B. Stevens(eds), 2020: Clouds and climate: Climate 951
science’s greatest challenge. CambridgeUniversity Press, https://doi.org/https://doi.org/10.1017/ 952
9781107447738. 953
Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow 954
cumulus convection. Journal of the Atmospheric Sciences, 52, 650–666, https://doi.org/https: 955
//doi.org/10.1175/1520-0469(1995)052⟨0650:EOPAFS⟩2.0.CO;2. 956
Siebesma, A. P., P. M. M. Soares, and J. Teixeira, 2007: A combined eddy-diffusivity mass-flux 957
approach for the convective boundary layer. J. Atmos. Sci., 64, 1230–1248, https://doi.org/ 958
https://doi.org/10.1175/JAS3888.1. 959
Siebesma, A. P., and Coauthors, 2003: A large eddy simulation intercomparison study of shal- 960
low cumulus convection. J. Atmos. Sci., 60, 1201–1219, https://doi.org/https://doi.org/10.1175/ 961
1520-0469(2003)60,1201:ALESIS.2.0.CO;2. 962
43
963 Simpson, J., 1971: On cumulus entrainment and one-dimensional models. Journal of the
Atmospheric Sciences, 28, 449–455, https://doi.org/https://doi.org/10.1175/1520-0469(1971) 964
028⟨0449:oceaod⟩2.0.co;2. 965
Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 966
97, 471–489, https://doi.org/https://doi.org/10.1175/1520-0493(1969)097⟨0471:MOPCT⟩2.3. 967
CO;2. 968
Smagorinsky, J., 1963: General circulation experiments with the primitive equation: I. the basic ex- 969
periment. Mon. Wea. Rev., 91, 99–164, https://doi.org/https://doi.org/10.1175/1520-0493(1963) 970
091⟨0099:GCEWTP⟩2.3.CO;2. 971
Smith, R. K., 1997: The physics and parameterization of moist atmospheric convection. Springer, 972
507pp, https://doi.org/https://doi.org/10.1007/978-94-015-8828-7. 973
Stanfield, R. E., H. Su, J. H. Jiang, S. R. Freitas, A. M. Molod, Z. J. Luo, L. Huang, and M. Luo, 974
2019: Convective entrainment rates estimated from aura co and cloudsat/calipso observations 975
and comparison with geos-5. Journal of Geophysical Research: Atmospheres, 124, 9796–9807, 976
https://doi.org/https://doi.org/10.1029/2019JD030846. 977
Stirling, A. J., and R. A. Stratton, 2012: Entrainment processes in the diurnal cycle of deep 978
convection over land. Quarterly Journal of the Royal Meteorological Society, 138, 1135–1149, 979
https://doi.org/https://doi.org/10.1002/qj.1868. 980
Tan, Z., C. M. Kaul, K. G. Pressel, Y. Cohen, T. Schneider, and J. Teixeira, 2018: An extended 981
eddy-diffusivity mass-flux scheme for unified representation of subgrid-scale turbulence and 982
convection. J. Adv. Model. Earth Syst., 10, 770–800, https://doi.org/https://doi.org/10.1002/ 983
2017MS001162. 984
985 Tarshish, N., N. Jeevanjee, and D. Lecoanet, 2018: Buoyant motion of a turbulent thermal. J.
Atmos. Sci., 75, 3233–3244, https://doi.org/https://doi.org/10.1175/JAS-D-17-0371.1. 986
987 Taylor, G. R., and M. B. Baker, 1991: Entrainment and detrainment in cumulus clouds. J. Atmos.
988 Sci., 48, 112–120, https://doi.org/https://doi.org/10.1175/1520-0469(1991)048⟨0112:EADICC⟩
2.0.CO;2. 989
44
Telford, J.W., 1975: Turbulence, entrainment, and mixing in cloud dynamics. Pure Appl. Geophys, 990
113, 1067–1084, https://doi.org/https://doi.org/10.1007/BF01592975. 991
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in 992
large-scale models. Mon. Wea. Rev., 117, 1779–1800, https://doi.org/https://doi.org/10.1175/ 993
1520-0493(1989)117⟨1779:ACMFSF⟩2.0.CO;2. 994
Turner, J. S., 1962: The ‘starting plume’ in neutral surroundings. Journal of Fluid Mechanics, 13, 995
356–368, https://doi.org/https://doi.org/10.1017/S0022112062000762. 996
von Salzen, K., and N. A. McFarlane, 2002: Parameterization of the bulk effects of lateral and 997
cloud-top entrainment in transient shallow cumulus clouds. J. Atmos. Sci., 59, 1405–1430, 998
https://doi.org/https://doi.org/10.1175/1520-0469(2002)059⟨1405:POTBEO⟩2.0.CO;2. 999
Weller, H., W. McIntyre, and D. Shipley, 2020: Multifluids for representing subgrid-scale convec- 1000
tion. Journal of Advances in Modeling Earth Systems, 12 (8), e2019MS001 966, https://doi.org/ 1001
https://doi.org/10.1029/2019MS001966. 1002
Xu, X., C. Sun, C. Lu, Y. Liu, G. J. Zhang, and Q. Chen, 2021: Factors affecting entrainment rate in 1003
deep convective clouds and parameterizations. Journal of Geophysical Research: Atmospheres, 1004
126, e2021JD034 881, https://doi.org/https://doi.org/10.1029/2021JD034881. 1005
Yano, J.-I., 1006 2014: Basic convective element: bubble or plume? A historical review. Atmos. Chem.
Phys., 14, 7019–7030, https://doi.org/10.5194/acp-14-7019-2014. 1007
Yeo, K., and D. M. Romps, 2013: Measurement of convective entrainment using La- 1008
grangian particles. Journal of the Atmospheric Sciences, 70 (1), 266–277, https://doi.org/ 1009
10.1175/jas-d-12-0144.1. 1010
Zhang, G., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization 1011
1012 of cumulus convection in the canadian climate centre general circulation model. Atmosphere-
Ocean, 33, 407–446, https://doi.org/https://doi.org/10.1080/07055900.1995.9649539. 1013
Zhao, M., and Coauthors, 2018: The gfdl global atmosphere and land model am4.0/lm4.0: 2. 1014
1015 model description, sensitivity studies, and tuning strategies. Journal of Advances in Modeling
Earth Systems, 10 (3), 735–769, https://doi.org/https://doi.org/10.1002/2017MS001209. 1016
45
Zhu, L., and Coauthors, 2021: A new approach for simultaneous estimation of entrainment 1017
and detrainment rates in non-precipitating shallow cumulus. Geophysical Research Letters, 48, 1018
e2021GL093 817, https://doi.org/https://doi.org/10.1029/2021GL093817. 1019
Zhu, L., and Coauthors, 2024: Evaluation of a new approach for entrainment and detrain- 1020
ment rate estimation. ournal of Geophysical Research: Atmospheres, 129, e2024JD040 789, 1021
https://doi.org/https://doi.org/10.1029/2024JD040789. 1022
46 University Staff: Request a correction | Centaur Editors: Update this record |