1. Erdik, E. Organozinc Reagents in Organic Synthesis. (CRC Press, 1996).
2. Knochel, P. & Jones, P. Organozinc Reagents. (Oxford University Press, 1999).
3. Seyferth, D. Zinc alkyls, Edward Frankland, and the beginnings of main-group organometallic chemistry. Organometallics 20, 2940–2955 (2001).
4. del Pozo, J., Gioria, E., Casares, J. A., Alvarez, R. & Espinet, P. Organometallic nucleophiles and Pd: What makes ZnMe2 different? Is Au like Zn? Organometallics 34, 3120–3128 (2015).
5. Alexakis, A., Bäckvall, J. E., Krause, N., Pàmies, O. & Diéguez, M. Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions. Chem. Rev. 108, 2796–2823 (2008).
6. Pu, L. & Yu, H. B. Catalytic asymmetric organozinc additions to carbonyl compounds. Chem. Rev. 101, 757–824 (2001).
7. Yamada, K. & Tomioka, K. Copper-catalyzed asymmetric alkylation of imines with dialkylzinc and related reactions. Chem. Rev. 108, 2874–2886 (2008).
8. Müller, D. S. & Marek, I. Asymmetric copper-catalyzed carbozincation of cyclopropenes en route to the formation of diastereo- and enantiomerically enriched polysubstituted cyclopropanes. J. Am. Chem. Soc. 137, 15414–15417 (2015).
9. Hernán-Gómez, A. et al. Exploiting synergistic effects in organozinc chemistry for direct stereoselective C-glycosylation reactions at room temperature. Angew. Chem. Int. Ed. 57, 10630–10634 (2018).
10. Borys, A. M., Gil-Negrete, J. M. & Hevia, E. Atom-efficient transition-metal-free arylation of N,O-acetals using diarylzinc reagents through Zn/Zn cooperativity. Chem. Commun. 57, 8905–8908 (2021).
11. Dunsford, J. J., Clark, E. R. & Ingleson, M. J. Direct C(sp2 )-C(sp3 ) cross-coupling of diaryl zinc reagents with benzylic, primary, secondary, and tertiary alkyl halides. Angew. Chem. Int. Ed. 54, 5688–5692 (2015).
12. Borys, A. M., Kunzmann, T., Gil-Negrete, J. M. & Hevia, E. Atom-efficient arylation of N-tosylimines mediated by cooperative ZnAr2/ Zn(C6F5)(2) combinations. Chem. Commun. 59, 7583–7586 (2023).
13. Pike, S. D., White, E. R., Shaffer, M. S. P. & Williams, C. K. Simple phosphinate ligands access zinc clusters identified in the synthesis of zinc oxide nanoparticles. Nat. Commun. 7, 13008 (2016).
14. Weckman, T. & Laasonen, K. Atomic layer deposition of zinc oxide: diethyl zinc reactions and surface saturation from first-principles. J. Phys. Chem. C. 120, 21460–21471 (2016).
15. Li, X. Q., Wang, B., Ji, H. Y. & Li, Y. S. Insights into the mechanism for ring-opening polymerization of lactide catalyzed by Zn(C6F 5)2/organic superbase Lewis pairs. Catal. Sci. Technol. 6, 7763–7772 (2016).
16. Piedra-Arroni, E., Ladaviere, C., Amgoune, A. & Bourissou, D. Ring-opening polymerization with Zn(C6F5)2-based Lewis pairs: original and efficient approach to cyclic polyesters. J. Am. Chem. Soc. 135, 13306–13309 (2013).
17. Neu, R. C., Otten, E. & Stephan, D. W. Bridging binding modes of phosphine-stabilized nitrous oxide to Zn(C6F5)2. Angew. Chem. Int. Ed. 48, 9709–9712 (2009).
18. Liberman-Martin, A. L., Levine, D. S., Ziegler, M. S., Bergman, R. G. & Tilley, T. D. Lewis acid-base interactions between platinum(II) diaryl complexes and bis(perfluorophenyl)zinc: strongly acceleratedreductive elimination induced by a Z-type ligand. Chem. Commun. 52, 7039–7042 (2016).
19. Wang, B., Wei, Y., Li, Z. J., Pan, L. & Li, Y. S. From Zn(C6F5)2 to ZnEt2-based Lewis pairs: significantly improved catalytic activity and monomer adaptability for the ring-opening polymerization of lactones. ChemCatChem 10, 5287–5296 (2018).
20. Paterson, A. F. et al. Addition of the Lewis acid Zn(C6F 5)2 enables organic transistors with a maximum hole mobility in excess of 20 cm2 V-1 s-1. Adv. Mater. 31, 1900871 (2019).
21. Huo, H. H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).
22. McCann, L. C. & Organ, M. G. On the remarkably different role of salt in the cross-coupling of arylzincs from that seen with alkylzincs. Angew. Chem. Int. Ed. 53, 4386–4389 (2014).
23. Fischer, C. & Fu, G. C. Asymmetric nickel-catalyzed negishi cross-couplings of secondary α-bromo amides with organozinc reagents. J. Am. Chem. Soc. 127, 4594–4595 (2005).
24. Knochel, P. & Singer, R. D. Preparation and reactions of polyfunctional organozinc reagents in organic synthesis. Chem. Rev. 93, 2117–2188 (1993).
25. Haas, D., Hammann, J. M., Greiner, R. & Knochel, P. Recent developments in Negishi cross-coupling reactions. Acs Catal 6, 1540–1552 (2016).
26. Asymmetric Autocatalysis: The Soai Reaction (eds Soai, K., Kawasaki, T. & Matsumoto, A.) (The Royal Society of Chemistry, 2022).
27. Zinc Catalysis: Applications in Organic Synthesis (eds Enthaler, S. & Wu, X. F.) (Wiley-VCH, Weinheim, 2015).
28. Jochmann, P. & Stephan, D. W. Reactions of CO2 with heteroleptic zinc and zinc-NHC complexes. Organometallics 32, 7503–7508 (2013).
29. Tulewicz, A. et al. Towards extended zinc ethylsulfinate networks by stepwise insertion of sulfur dioxide into Zn-C bonds. Chem. -Eur. J. 25, 14072–14080 (2019).
30. Procter, R. J., Uzelac, M., Cid, J., Rushworth, P. J. & Ingleson, M. J. Low-coordinate NHC-zinc hydride complexes catalyze alkyne C-H borylation and hydroboration using pinacolborane. Acs Catal 9, 5760–5771 (2019).
31. Allen, J. et al. Organozinc β-thioketiminate complexes and their application in ketone hydroboration catalysis. Organometallics 44, 749–759 (2025).
32. Specklin, D., Fliedel, C. & Dagorne, S. Recent representative advances on the synthesis and reactivity of N-heterocyclic-carbene- supported zinc complexes. Chem. Rec. 21, 1130–1143 (2021).
33. Hevia, E. & Dankert, F. Reductive-transmetalation reactions of ZnR2/(AlCp*)4 heterobimetallic combinations and application towards CO2 insertion. Eur. J. Inorg. Chem. 27, e202400418 (2024).
34. Penner-Hahn, J. E. Characterization of “spectroscopically quiet” metals in biology. Coord. Chem. Rev. 249, 161–177 (2005).
35. Stepanic, O. M. et al. Probing a silent metal: a combined X-ray absorption and emission spectroscopic study of biologically relevant zinc complexes. Inorg. Chem. 59, 13551–13560 (2020).
36. Erdmann, P. & Greb, L. What distinguishes the strength and the effect of a lewis acid: analysis of the Gutmann-Beckett method. Angew. Chem. Int. Ed. 61, e202114550 (2022).
37. Pearson, R. G. Absolute electronegativity and hardness—application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988).
38. Haaland, A. et al. The length, strength and polarity of metal-carbon bonds: dialkylzinc compounds studied by density functional theory calculations, gas electron diffraction and photoelectron spectroscopy. Dalton Trans. 4356-4366 (2003).
39. Jupp, A. R., Johnstone, T. C. & Stephan, D. W. The global electrophilicity index as a metric for Lewis acidity. Dalton Trans 47, 7029–7035 (2018).
40. Jupp, A. R., Johnstone, T. C. & Stephan, D. W. Improving the global electrophilicity index (GEI) as a measure of Lewis acidity. Inorg. Chem.57, 14764–14771 (2018).
41. Seidel, R., Winter, B. & Bradforth, S. E. Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy. Annu. Rev. Phys. Chem. 67, 283–305 (2016).
42. Glatzel, P., Sikora, M., Smolentsev, G. & Fernandez-Garcia, M. Hard X-ray photon-in photon-out spectroscopy. Catal. Today 145, 294–299 (2009).
43. Bauer, M. HERFD-XAS and valence-to-core-XES: new tools to push the limits in research with hard X-rays? Phys. Chem. Chem. Phys. 16, 13827–13837 (2014).
44. Nchari, L. N. et al. In 14th International Conference on X-Ray Absorption Fine Structure Vol. 190 Journal of Physics Conference Series (eds DiCicco, A. & Filipponi, A.) (Iop Publishing Ltd, 2009).
45. Werner, T., Bauer, M., Riahi, A. M. & Schramm, H. A catalytic system for the activation of diorganozinc reagents. Eur. J. Org. Chem 2014, 4876–4883 (2014).
46. Brown, N. J. et al. From organometallic zinc and copper complexes to highly active colloidal catalysts for the conversion of CO2 to methanol. Acs Catal 5, 2895–2902 (2015).
47. Clarke, C. J. et al. Zinc 1s valence-to-core X-ray emission spectroscopy of halozincate complexes. J. Phys. Chem. A 123, 9552–9559 (2019).
48. Dhakal, D. et al. The evolution of solvation symmetry and composition in Zn halide aqueous solutions from dilute to extreme concentrations. Phys. Chem. Chem. Phys. 25, 22650–22661 (2023).
49. Glatzel, P. & Bergmann, U. High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes - electronic and structural information. Coord. Chem. Rev. 249, 65–95 (2005).
50. Pollock, C. J. & DeBeer, S. Insights into the geometric and electronic structure of transition metal centers from valence-to-core X-ray emission spectroscopy. Acc. Chem. Res. 48, 2967–2975 (2015).
51. Kowalska, J. K., Lima, F. A., Pollock, C. J., Rees, J. A. & DeBeer, S. A practical guide to high-resolution X-ray spectroscopic measurements and their applications in bioinorganic chemistry. Isr. J. Chem. 56, 803–815 (2016).
52. MacMillan, S. N. & Lancaster, K. M. X-ray spectroscopic interrogation of transition-metal-mediated homogeneous catalysis: primer and case studies. Acs Catal 7, 1776–1791 (2017).
53. Rio, J., Perrin, L. & Payard, P. A. Structure-reactivity relationship of organozinc and organozincate reagents: key elements towards molecular understanding. Eur. J. Org. Chem 2022, e202200906 (2022).
54. Markies, P. R. et al. Coordinational behavior of solvent-free diorganylzinc compounds - the remarkable X-ray structure of dimeric diphenylzinc. Organometallics 9, 2243–2247 (1990).
55. The Chemistry of Organozinc Compounds (eds Rappoport, Z. & Marek, I.) (John Wiley & Sons, Chichester, 2006).
56. Crockett, M. P., Zhang, H., Thomas, C. M. & Byers, J. A. Adding diffusion ordered NMR spectroscopy (DOSY) to the arsenal for characterizing paramagnetic complexes. Chem. Commun. 55, 14426–14429 (2019).
57. Evans, R. The interpretation of small molecule diffusion coefficients: quantitative use of diffusion-ordered NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 117, 33–69 (2020).
58. Baker, M. L. et al. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 345, 182–208 (2017).
59. Bacsa, J. et al. The solid-state structures of dimethylzinc and diethylzinc. Angew. Chem. Int. Ed. 50, 11685–11687 (2011).
60. del Pozo, J. et al. Speciation of ZnMe2, ZnMeCl, and ZnCl2 in tetrahydrofuran (THF), and its influence on mechanism calculations of catalytic processes. Acs Catal 7, 3575–3583 (2017).
61. Fazekas, E., Lowy, P. A., Rahman, M. A. & Garden, J. A. In Comprehensive Organometallic Chemistry IV (Fourth Edition) Vol. 11 (ed Liptrot, D. J.) 193-304 (Elsevier Ltd., 2022).
62. Daniel, A. G. & Farrell, N. P. The dynamics of zinc sites in proteins: electronic basis for coordination sphere expansion at structural sites. Metallomics 6, 2230–2241 (2014).
63. Mirabi, B., Poh, W. C., Armstrong, D., Lough, A. J. & Fekl, U. Why diorganyl zinc lewis acidity dramatically increases with narrowing C-Zn-C bond angle. Inorg. Chem. 59, 2621–2625 (2020).
64. Reichardt, C. & Welton, T. Solvents and Solvent Effects in Organic Chemistry. 4th edn, (Wiley, 2011).
65. Jana, R., Pathak, T. P. & Sigman, M. S. Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 111, 1417–1492(2011).
66. Dekker, J., Boersma, J., Fernholt, L., Haaland, A. & Spek, A. L. Molecular-structures of bis(3-(dimethylamino)propyl)zinc, Zn((CH2) 3N(CH3)2)2, by X-ray and gas electron-diffraction and bis(3-mercaptopropyl)zinc, Z((CH2)3SCH3)2, by gas electron-diffraction. Organometallics 6, 1202–1206 (1987).
67. Pierret, A., Lefebvre, C., Gros, P. C., Denhez, C. & Vasseur, A. The mechanism of lithium zincate-mediated I/Zn exchange revisited: a computational microsolvation approach in THF. Eur. J. Org. Chem. 26, 13 (2023).
68. Judge, N. R. & Hevia, E. Alkali-metal-alkoxide powered zincation of fluoroarenes employing zinc bis-amide Zn(TMP)2. Angew. Chem. Int. Ed 62, 7 (2023).
69. Seymour, J. M. et al. Unravelling the complex speciation of halozincate ionic liquids using X-ray spectroscopies and calculations. Faraday Discuss 253, 251–272 (2024).
70. Diaz-Moreno, S. et al. In 14th International Conference on X-Ray Absorption Fine Structure Vol. 190 Journal of Physics Conference Series (eds DiCicco, A. & Filipponi, A.) (Iop Publishing Ltd, 2009).
71. Hayama, S. et al. Photon-in/photon-out spectroscopy at the I20-scanning beamline at diamond light source. J. Phys. Condes. Matter 33, 11 (2021).
72. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
73. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. -Comput. Mol. Sci. 2, 73–78 (2012).
74. Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics 4, 17 (2012).
75. Najibi, A. & Goerigk, L. The nonlocal kernel in van der waals density functionals as an additive correction: an extensive analysis with special emphasis on the B97M-V and ωB97M-V Approaches. J. Chem. Theory Comput. 14, 5725–5738 (2018).
76. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305(2005).
77. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).
78. van Lenthe, E., Snijders, J. G. & Baerends, E. J. The zero-order regular approximation for relativistic effects: the effect of spin- orbit coupling in closed shell molecules. J. Chem. Phys. 105, 6505–6516 (1996).
79. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
80. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32,1456–1465 (2011).
81. Towers Tompkins, F. K. et al. Efficient prediction of the local electronic structure of ionic liquids from low-cost calculations. Phys. Chem. Chem. Phys. 27, 8803–8812 (2025).
82. Andersson, K., Malmqvist, P. A., Roos, B. O., Sadlej, A. J. & Wolinski, K. 2nd-order perturbation-theory with a CASSCF reference function. J. Phys. Chem. 94, 5483–5488 (1990).
83. Werner, H. J. & Meyer, W. A quadratically convergent MCSCF method for the simultaneous optimization of several states. J. Chem. Phys. 74, 5794–5801 (1981).
84. Malmqvist, P. A., Pierloot, K., Shahi, A. R. M., Cramer, C. J. & Gagliardi, L. The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. J. Chem. Phys. 128, 10 (2008).
85. Finley, J., Malmqvist, P. A., Roos, B. O. & Serrano-Andres, L. The multi-state CASPT2 method. Chem. Phys. Lett. 288, 299–306 (1998).
86. Galván, I. F. et al. OpenMolcas: from source code to insight. J. Chem. Theory Comput. 15, 5925–5964 (2019).
87. Delcey, M. G., Sørensen, L. K., Vacher, M., Couto, R. C. & Lundberg, M. Efficient calculations of a large number of highly excited states for multiconfigurational wavefunctions. J. Comput. Chem. 40, 1789–1799 (2019).
88. Malmqvist, P. A. & Roos, B. O. The CASSCF State Interaction Method. Chem. Phys. Lett. 155, 189–194 (1989).
89. Roos, B. O., Lindh, R., Malmqvist, P., Veryazov, V. & Widmark, P. O. Main group atoms and dimers studied with a new relativistic ANO basis set. J. Phys. Chem. A 108, 2851–2858 (2004).
90. Douglas, M. & Kroll, N. M. Quantum electrodynamical corrections to fine-structure of helium. Ann. Phys. 82, 89–155 (1974).
91. Hess, B. A. Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys. Rev. A 33, 3742–3748 (1986).
92. Hess, B. A., Marian, C. M., Wahlgren, U. & Gropen, O. A mean-field spin-orbit method applicable to correlated wavefunctions. Chem. Phys. Lett. 251, 365–371 (1996).
93. Fouda, A. E. A., Purnell, G. I. & Besley, N. A. Simulation of ultra-fast dynamics effects in resonant inelastic X-ray scattering of gas-phase water. J. Chem. Theory Comput. 14, 2586–2595 (2018).
94. Fouda, A. E. A. et al. Observation of double excitations in the resonant inelastic X-ray scattering of nitric oxide. J. Phys. Chem. Lett. 11, 7476–7482 (2020).
95. Fouda, A. E. A. & Ho, P. J. Site-specific generation of excited state wavepackets with high-intensity attosecond X-rays. J. Chem. Phys. 154, 10 (2021).
96. Delgado-Jaime, M. U. & DeBeer, S. Expedited analysis of DFT outputs: introducing moanalyzer. J. Comput. Chem. 33, 2180–2185 (2012).
97. Lu, T. & Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).