Toxicological assessment of benzalkonium chloride using planaria mobility: a comparison of manual and digital tracking methods

[thumbnail of Open Access]
Preview
Text (Open Access)
- Published Version
· Available under License Creative Commons Attribution.
[thumbnail of Methods paper accepted.docx]
Text
- Accepted Version
· Restricted to Repository staff only

Please see our End User Agreement.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Habel, M. M., Williams, A. C. ORCID: https://orcid.org/0000-0003-3654-7916 and Khutoryanskiy, V. V. ORCID: https://orcid.org/0000-0002-7221-2630 (2025) Toxicological assessment of benzalkonium chloride using planaria mobility: a comparison of manual and digital tracking methods. Environmental Toxicology and Pharmacology, 120. 104850. ISSN 1872-7077 doi: 10.1016/j.etap.2025.104850

Abstract/Summary

The principle of the 3Rs—Reduction, Refinement, and Replacement—encourages minimizing animal use, improving experimental design, and developing alternative models for toxicology testing. Among such models, planaria (aquatic flatworms) have gained increasing attention in pharmacology, regenerative medicine, and toxicology because of their simple anatomy, high environmental sensitivity, exceptional regenerative ability, and ease of laboratory maintenance. In this study, we examined the effects of benzalkonium chloride (BAC)—a commonly used pharmaceutical excipient with antimicrobial and permeability-enhancing properties, as well as a known environmental toxicant—on the locomotor activity of Schmidtea mediterranea using both manual assessment and Lolitrack video-tracking software. Six concentrations of BAC (5–1000 μg/mL) and a negative control were tested. Both approaches showed an overall reduction in locomotor activity over time, though manual analysis indicated a transient stimulation at lower concentrations. The software-based method demonstrated greater reliability, precision, and objectivity, making it preferable for toxicity evaluation in planaria.

Altmetric Badge

Item Type Article
URI https://centaur.reading.ac.uk/id/eprint/125306
Identification Number/DOI 10.1016/j.etap.2025.104850
Refereed Yes
Divisions Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Pharmaceutics Research Group
Publisher Elsevier
Download/View statistics View download statistics for this item

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record