Accessibility navigation


New insights on growth mechanisms of protein clusters at surfaces: an AFM and simulation study

Pellenc, D., Bennett, R. A. ORCID: https://orcid.org/0000-0001-6266-3510, Green, R. G., Sperrin, M. and Mulheran, P. A. (2008) New insights on growth mechanisms of protein clusters at surfaces: an AFM and simulation study. Langmuir, 24 (17). pp. 9648-9655. ISSN 0743-7463

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/la801246k

Abstract/Summary

Despite its relevance to a wide range of technological and fundamental areas, a quantitative understanding of protein surface clustering dynamics is often lacking. In inorganic crystal growth, surface clustering of adatoms is well described by diffusion-aggregation models. In such models, the statistical properties of the aggregate arrays often reveal the molecular scale aggregation processes. We investigate the potential of these theories to reveal hitherto hidden facets of protein clustering by carrying out concomitant observations of lysozyme adsorption onto mica surfaces, using atomic force microscopy. and Monte Carlo simulations of cluster nucleation and growth. We find that lysozyme clusters diffuse across the substrate at a rate that varies inversely with size. This result suggests which molecular scale mechanisms are responsible for the mobility of the proteins on the substrate. In addition the surface diffusion coefficient of the monomer can also be extracted from the comparison between experiments and simulations. While concentrating on a model system of lysozyme-on-mica, this 'proof of concept' study successfully demonstrates the potential of our approach to understand and influence more biomedically applicable protein-substrate couples.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > Electron Microscopy Laboratory (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Chemistry
Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy
ID Code:1416
Uncontrolled Keywords:ATOMIC-FORCE MICROSCOPY, MONTE-CARLO SIMULATIONS, BOVINE SERUM-ALBUMIN, LYSOZYME ADSORPTION, ADSORBED PROTEINS, CELL-ADHESION, CONFORMATIONAL-CHANGES, FIBRINOGEN ADSORPTION, CHARGED SURFACES, DIFFUSION
Publisher:American Chemical Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation