Accessibility navigation

Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes

Claus, S. P., Tsang, T. M., Wang, Y., Cloarec, O., Skordi, E., Martin, F.-P., Rezzi, S., Ross, A., Kochhar, S., Holmes, E. and Nicholson, J. K. (2008) Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Molecular systems biology, 4 (219). ISSN 1744-4292

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1038/msb.2008.56


To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.

Item Type:Article
Divisions:Interdisciplinary centres and themes > Chemical Analysis Facility (CAF) > NMR (CAF)
Life Sciences > School of Chemistry, Food and Pharmacy > Department of Food and Nutritional Sciences > Food Microbial Sciences Research Group
ID Code:25291
Publisher:Nature Publishing Group

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation