Accessibility navigation


Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation

Hogan, R. ORCID: https://orcid.org/0000-0002-3180-5157, Tian, L., Brown, P. R.A., Westbrook, C. ORCID: https://orcid.org/0000-0002-2889-8815, Heymsfield, A. J. and Eastment, J. D. (2012) Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. Journal of Applied Meteorology and Climatology, 51 (3). pp. 655-671. ISSN 1558-8432

[img]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.

6MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/JAMC-D-11-074.1

Abstract/Summary

The assumed relationship between ice particle mass and size is profoundly important in radar retrievals of ice clouds, but, for millimeter-wave radars, shape and preferred orientation are important as well. In this paper the authors first examine the consequences of the fact that the widely used ‘‘Brown and Francis’’ mass–size relationship has often been applied to maximumparticle dimension observed by aircraftDmax rather than to the mean of the particle dimensions in two orthogonal directions Dmean, which was originally used by Brown and Francis. Analysis of particle images reveals that Dmax ’ 1.25Dmean, and therefore, for clouds for which this mass–size relationship holds, the consequences are overestimates of ice water content by around 53% and of Rayleigh-scattering radar reflectivity factor by 3.7 dB. Simultaneous radar and aircraft measurements demonstrate that much better agreement in reflectivity factor is provided by using this mass–size relationship with Dmean. The authors then examine the importance of particle shape and fall orientation for millimeter-wave radars. Simultaneous radar measurements and aircraft calculations of differential reflectivity and dual-wavelength ratio are presented to demonstrate that ice particles may usually be treated as horizontally aligned oblate spheroids with an axial ratio of 0.6, consistent with them being aggregates. An accurate formula is presented for the backscatter cross section apparent to a vertically pointing millimeter-wave radar on the basis of a modified version of Rayleigh–Gans theory. It is then shown that the consequence of treating ice particles as Mie-scattering spheres is to substantially underestimate millimeter-wave reflectivity factor when millimeter-sized particles are present, which can lead to retrieved ice water content being overestimated by a factor of 4.h

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > National Centre for Earth Observation (NCEO)
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:28398
Publisher:American Meteorological Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation