Accessibility navigation


Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods

Schmidli, J., Frei, C. and Vidale, P. L. ORCID: https://orcid.org/0000-0002-1800-8460 (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. International Journal of Climatology, 26 (5). pp. 679-689. ISSN 0899-8418

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/joc.1287

Abstract/Summary

A precipitation downscaling method is presented using precipitation from a general circulation model (GCM) as predictor. The method extends a previous method from monthly to daily temporal resolution. The simplest form of the method corrects for biases in wet-day frequency and intensity. A more sophisticated variant also takes account of flow-dependent biases in the GCM. The method is flexible and simple to implement. It is proposed here as a correction of GCM output for applications where sophisticated methods are not available, or as a benchmark for the evaluation of other downscaling methods. Applied to output from reanalyses (ECMWF, NCEP) in the region of the European Alps, the method is capable of reducing large biases in the precipitation frequency distribution, even for high quantiles. The two variants exhibit similar performances, but the ideal choice of method can depend on the GCM/reanalysis and it is recommended to test the methods in each case. Limitations of the method are found in small areas with unresolved topographic detail that influence higher-order statistics (e.g. high quantiles). When used as benchmark for three regional climate models (RCMs), the corrected reanalysis and the RCMs perform similarly in many regions, but the added value of the latter is evident for high quantiles in some small regions.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:28572
Publisher:Wiley

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation