Accessibility navigation


Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase

Deng, J., Lewis, P. A., Greggio, E., Sluch, E., Beilina, A. and Cookson, M. A. (2008) Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proceedings of the National Academy of Sciences, 105 (5). pp. 1499-1504. ISSN 1091-6490

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1073/pnas.0709098105

Abstract/Summary

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of Parkinson's disease (PD). LRRK2 contains a Ras of complex proteins (ROC) domain that may act as a GTPase to regulate its protein kinase activity. The structure of ROC and the mechanism(s) by which it regulates kinase activity are not known. Here, we report the crystal structure of the LRRK2 ROC domain in complex with GDP-Mg2+ at 2.0-Å resolution. The structure displays a dimeric fold generated by extensive domain-swapping, resulting in a pair of active sites constructed with essential functional groups contributed from both monomers. Two PD-associated pathogenic residues, R1441 and I1371, are located at the interface of two monomers and provide exquisite interactions to stabilize the ROC dimer. The structure demonstrates that loss of stabilizing forces in the ROC dimer is likely related to decreased GTPase activity resulting from mutations at these sites. Our data suggest that the ROC domain may regulate LRRK2 kinase activity as a dimer, possibly via the C-terminal of ROC (COR) domain as a molecular hinge. The structure of the LRRK2 ROC domain also represents a signature from a previously undescribed class of GTPases from complex proteins and results may provide a unique molecular target for therapeutics in PD.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Chemistry, Food and Pharmacy > School of Pharmacy > Division of Pharmacology
ID Code:29464
Additional Information:The full text of this article is freely available via PMC using the link supplied in Related URLs
Publisher:National Academy of Sciences

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation