Accessibility navigation


Acetone enhances the direct analysis of procyanidin- and prodelphinidin-based condensed tannins in lotus species by the butanol-HCl-iron assay

Grabber, J., Zeller, W. E. and Mueller-Harvey, I. (2013) Acetone enhances the direct analysis of procyanidin- and prodelphinidin-based condensed tannins in lotus species by the butanol-HCl-iron assay. Journal of Agricultural and Food Chemistry, 61 (11). pp. 2669-2678. ISSN 0021-8561

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1021/jf304158m

Abstract/Summary

The butanol-HCl spectrophotometric assay is widely used for quantifying extractable and insoluble condensed tannins (CT, syn. proanthocyanidins) in foods, feeds, and foliage of herbaceous and woody plants, but the method underestimates total CT content when applied directly to plant material. To improve CT quantitation, we tested various cosolvents with butanol-HCl and found that acetone increased anthocyanidin yields from two forage Lotus species having contrasting procyanidin and prodelphinidin compositions. A butanol-HCl-iron assay run with 50% (v/v) acetone gave linear responses with Lotus CT standards and increased estimates of total CT in Lotus herbage and leaves by up to 3.2-fold over the conventional method run without acetone. The use of thiolysis to determine the purity of CT standards further improved quantitation. Gel-state 13C and 1H–13C HSQC NMR spectra of insoluble residues collected after butanol-HCl assays revealed that acetone increased anthocyanidin yields by facilitating complete solubilization of CT from tissue.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Agriculture, Policy and Development > Department of Animal Sciences > Animal, Dairy and Food Chain Sciences (ADFCS)- DO NOT USE
ID Code:31005
Publisher:American Chemical Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation