Accessibility navigation

On nonlinear symmetric stability and the nonlinear saturation of symmetric instability

Mu, M., Shepherd, T. G. ORCID: and Swanson, K. (1996) On nonlinear symmetric stability and the nonlinear saturation of symmetric instability. Journal of the Atmospheric Sciences, 53 (20). pp. 2918-2923. ISSN 1520-0469

Text - Published Version
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/1520-0469(1996)053<2918:ONSSAT>2.0.CO;2


A nonlinear symmetric stability theorem is derived in the context of the f-plane Boussinesq equations, recovering an earlier result of Xu within a more general framework. The theorem applies to symmetric disturbances to a baroclinic basic flow, the disturbances having arbitrary structure and magnitude. The criteria for nonlinear stability are virtually identical to those for linear stability. As in Xu, the nonlinear stability theorem can be used to obtain rigorous upper bounds on the saturation amplitude of symmetric instabilities. In a simple example, the bounds are found to compare favorably with heuristic parcel-based estimates in both the hydrostatic and non-hydrostatic limits.

Item Type:Article
Divisions:No Reading authors. Back catalogue items
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:32866
Publisher:American Meteorological Society


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation