Accessibility navigation


Development of convection along the SPCZ within a Madden-Julian oscillation

Matthews, A. J., Hoskins, B. J., Slingo, J. M. and Blackburn, M. (1996) Development of convection along the SPCZ within a Madden-Julian oscillation. Quarterly Journal of the Royal Meteorological Society, 122 (531). pp. 669-688. ISSN 1477-870X

[img]
Preview
Text - Published Version
· Please see our End User Agreement before downloading.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/qj.49712253106

Abstract/Summary

A subtropical Rossby-wave propagation mechanism is proposed to account for the poleward and eastward progression of intraseasonal convective anomalies along the South Pacific convergence zone (SPCZ) that is observed in a significant proportion of Madden–Julian oscillations (MJOs). Large-scale convection, associated with an MJO, is assumed to be already established over the Indonesian region. The latent heating associated with this convection forces an equatorial Rossby-wave response with an upper-tropospheric anticyclone centred over, or slightly to the west of, the convection. Large potential-vorticity (PV) gradients, associated with the subtropical jet and the tropopause, lie just poleward of the anticyclone, and large magnitude PV air is advected equatorwards on the eastern side of the anticyclone. This ‘high’ PV air, or upper-tropospheric trough, is far enough off the equator that it has associated strong horizontal temperature gradients, and it induces deep ascent on its eastern side, at a latitude of about 15–30°. If this deep ascent is over a region susceptible to deep convection, such as the SPCZ, then convection may be forced or triggered. Hence convection develops along the SPCZ as a forced response to convection over Indonesia. The response mechanism is essentially one of subtropical Rossby-wave propagation. This hypothesis is based on a case study of a particularly strong MJO in early 1988, and is tested by idealized modelling studies. The mechanism may also be relevant to the existence of the mean SPCZ, as a forced response to mean Indonesian convection.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:34984
Publisher:Royal Meteorological Society

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation