Accessibility navigation


ERA-Interim/Land: a global land surface reanalysis data set

Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H. ORCID: https://orcid.org/0000-0002-1472-868X, Dee, D., Dutra, E., Muñoz-Sabater, J., Pappenberger, F., de Rosnay, P., Stockdale, T. and Vitart, F. (2015) ERA-Interim/Land: a global land surface reanalysis data set. Hydrology and Earth System Sciences, 19 (1). pp. 389-407. ISSN 1027-5606

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

2MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/hess-19-389-2015

Abstract/Summary

ERA-Interim/Land is a global land surface reanalysis data set covering the period 1979–2010. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF (European Centre for Medium-Range Weather Forecasts) land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80 km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim data set, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models.

Item Type:Article
Refereed:Yes
Divisions:Interdisciplinary Research Centres (IDRCs) > Walker Institute
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
Interdisciplinary centres and themes > Soil Research Centre
ID Code:39080
Publisher:Copernicus

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation