Accessibility navigation

A surface energy perspective on climate change

Andrews, T., Forster, P. M. and Gregory, J. M. (2009) A surface energy perspective on climate change. Journal of Climate, 22 (10). pp. 2557-2570. ISSN 1520-0442

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1175/2008JCLI2759.1


A surface forcing response framework is developed that enables an understanding of time-dependent climate change from a surface energy perspective. The framework allows the separation of fast responses that are unassociated with global-mean surface air temperature change (ΔT), which is included in the forcing, and slow feedbacks that scale with ΔT. The framework is illustrated primarily using 2 × CO2 climate model experiments and is robust across the models. For CO2 increases, the positive downward radiative component of forcing is smaller at the surface than at the tropopause, and so a rapid reduction in the upward surface latent heat (LH) flux is induced to conserve the tropospheric heat budget; this reduces the precipitation rate. Analysis of the time-dependent surface energy balance over sea and land separately reveals that land areas rapidly regain energy balance, and significant land surface warming occurs before global sea temperatures respond. The 2 × CO2 results are compared to a solar increase experiment and show that some fast responses are forcing dependent. In particular, a significant forcing from the fast hydrological response found in the CO2 experiments is much smaller in the solar experiment. The different fast response explains why previous equilibrium studies found differences in the hydrological sensitivity between these two forcings. On longer time scales, as ΔT increases, the net surface longwave and LH fluxes provide positive and negative surface feedbacks, respectively, while the net surface shortwave and sensible heat fluxes change little. It is found that in contrast to their fast responses, the longer-term response of both surface energy fluxes and the global hydrological cycle are similar for the different forcing agents.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > NCAS
Science > School of Mathematical, Physical and Computational Sciences > Department of Meteorology
ID Code:4332
Uncontrolled Keywords:hydrological cycle; co2; model; sensitivity; atmosphere; mechanisms; impact
Publisher:American Meteorological Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation