ReferencesAnthes, R.A., 1977. A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Weather Rev. 105, 270–286.Arakawa, A., 1993. Closure assumptions in the cumulus parameterization problem. In: The Representation of Cumulus Convection in Numerical Models,Meteor. Mono. No. 46. Amer. Meteor. Soc., pp. 1–15.Arakawa, A., Chen, J.-M., 1987. Closure assumptions in the cumulus parameterization problem. In: Matsuno, T. (Ed.), Short- and Medium-range NumericalPrediction, Collection of Papers Presented at the WMO/IUGG NWP Symposium. Tokyo, 4–8 August 1986. Meteor. Soc., Japan, pp. 107–131.Arakawa, A., Schubert, W.H., 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 31, 674–701.Bechtold, P., Bazile, E., Guichard, F., Mascart, P., Richard, E., 2001. A mass-flux convection scheme for regional and global models. Q. J. Roy. Meteor. Soc. 127,869–889.Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., Bormann, N., 2014. Representing equilibrium and non-equilibrium convection in large-scalemodels. J. Atmos. Sci. 71, 734–753.Bougeault, P., 1985. A simple parameterization of the large-scale effects of cumulus convection. Mon. Weather Rev. 113, 2108–2121.Browning, G., Kasahara, A., Kreiss, H.-O., 1980. Initialization of the primitive equations by the bounded derivative method. J. Atmos. Sci. 37, 1424–1436.Donner, L.J., 1993. A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci. 50, 889–906.Donner, L.J., Phillips, V.T., 2003. Boundary layer control on convective available potential energy: implications for cumulus parameterization. J. Geophys.Res. 108, 4701, http://dx.doi.org/10.1029/2003JD003773.Emanuel, K.A., 1993. A cumulus representation based on the episodic mixing model: the importance of mixing and microphysics in predicting humidity.In: Emanuel, K.A., Raymond, D.J. (Eds.), The Representation of Cumulus Convection in Numerical Models. Meteorological Monographs, 24. AmericanMeteorological Society, pp. 185–192.Emanuel, K.A., 1995. The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci. 52,3960–3968.Emanuel, K.A., Neelin, J.D., Bretherton, C.S., 1994. On large-scale circulations in convecting atmosphere. Q. J. Roy. Meteor. Soc. 120, 1111–1143.Fritsch, J.M., Chappell, C.F., 1980. Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos.Sci. 37, 1722–1733.Gregory, D., 1997. The mass flux approach to the parameterization of deep convection. In: Smith, R.K. (Ed.), The Physics and Parameterization of MoistAtmospheric Convection. Kluwer Academic Publishers, pp. 297–319.Gregory, D., Morcrette, J.-J., Jacob, C., Beljaars, A.C.M., Stockdale, T., 2000. Revision of convection, radiation and cloud schemes in the ECMWF integratedforecasting system. Q. J. Roy. Meteor. Soc. 126, 1685–1710.Kain, J.S., 2004. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteor. 43, 170–181.Kreiss, H.O., 1980. Problems with different time scales for partial-differential equations. Commun. Pure Appl. Math. 33, 399–439.Krishnamurti, T.N., Kanamitsu, M., Godbole, R., Chang, C.B., Carr, F., Chow, J., 1976. Study of a monsoon depression (II), Dynamical structure. J. Meteorol.Soc. Jpn. 54, 208–225.Kuo, H.L., 1974. Further studies of the parameterization of the influence of cumulus convection on the large-scale flow. J. Atmos. Sci. 31, 1232–1240.Lord, S.J., 1982. Interaction of a cumulus cloud ensemble with the large-scale environment. Part III: Semiprognostic test of the Arakawa–Schubert cumulusparameterization. J. Atmos. Sci. 39, 88–103.Lord, S.J., Chao, W.C., Arakawa, A., 1982. Interaction of a cumulus cloud ensemble with the large-scale environment. Part IV: The discrete model. J. Atmos.Sci. 39, 104–113.McFarlane, N., 2011. Parameterizations: representing key processes in climate models without resolving them. WIREs Clim. Change 2, 482–497,http://dx.doi.org/10.1002/wcc.122.Molinari, J., 1985. A general form of Kuo’s cumulus parameterization. Mon. Weather Rev. 113, 1411–1416.Moorthi, S., Suarez, M.J., 1992. Relaxed Arakawa–Schubert. A parameterization of moist convection for general circulation models. Mon. Weather Rev. 120,978–1002.Pan, D.-M., Randall, D.A., 1998. A cumulus parameterization with prognostic closure. Q. J. Roy. Meteor. Soc. 124, 949–981.Plant, R.S., Yano, J.-I., 2013. The energy-cycle analysis of the interactions between shallow and deep atmospheric convection. Dyn. Atmos. Ocean 64, 27–52.Randall, D.A., Pan, D.-M., 1993. Implementation of the Arakawa–Schubert cumulus parameterization with a prognostic closure. In: Emanuel, K.A., Raymond,D.J. (Eds.), The Representation of Cumulus Convection in Numerical Models. Meteorological Monographs No. 46. Amer. Meteor. Soc., pp. 137–144.Raymond, D.J., 1995. Regulation of moist convection over the warm tropical oceans. J. Atmos. Sci. 52, 3945–3959.Roff, G.L., Yano, J.-I., 2002. Tropical convective variability in the CAPE phase space. Q. J. Roy. Meteor. Soc. 128, 2317–2333.de Rooy, W.C., Bechtold, P., Frohlich, K., Hohenegger, C., Jonker, H., Mironov, D., Pier Siebesma, A., Teixeira, J., Yano, J.-I., 2013. Entrainment and detrainmentin cumulus convection: an overview. Q. J. Roy. Meteor. Soc. 139, 1–19.Yano, J.-I., 2011. Interactive comment on “Simulating deep convection with a shallow convection scheme” by Hohenegger, C., and Bretherton, C. S., OnPBL-based closure. Atmos. Chem. Phys. Discuss. 11, C2411–C2425 http://www.atmos-chem-phys-discuss.net/11/C2411/2011/.Yano, J.-I., 2014a. Formulation structure of the mass-flux convection parameterization. Dyn. Atmos. Ocean 67, 1–28.Yano, J.-I., 2014b. Basic convective element: bubble or plume? A historical review. Atmos. Phys. Chem. 14, 7019–7030.Yano, J.-I., Chaboureau, J.-P., Guichard, F., 2005. A generalization of CAPE into potential-energy convertibility. Q. J. Roy. Meteor. Soc. 131, 861–875.Yano, J.-I., Plant, R.S., 2012a. Convective quasi-equilibrium. Rev. Geophys. 50, RG4004.Yano, J.-I., Plant, R.S., 2012b. Finite departure from convective quasi-equilibrium: periodic cycle and discharge–recharge mechanism. Q. J. Roy. Meteor. Soc.138, 626–637.Yano, J.-I., Plant, R.S., 2012c. Interactions between shallow and deep convection under a finite departure from convective quasi-equilibrium. J. Atmos. Sci.69, 3463–3470.Yano, J.-I., Liu, C., Moncrieff, M.W., 2012. Self-organized criticality and homeostasis in atmospheric convective organization. J. Atmos. Sci. 69, 3449–3462.Yano, J.-I., Bister, M., Fuchs, Z., Gerard, L., Phillips, V., Barkidija, S., Piriou, J.M., 2013. Phenomenology of convection-parameterization closure. Atmos. Phys.Chem. 13, 4111–4131.Yano, J.-I., Geleyn, J.-F., Köhler, M., Mironov, D., Quaas, J., Soares, P.M.M., Phillips, V.T.J., Plant, R.S., Deluca, A., Marquet, P., Stulic, L., Fuchs, Z., 2014. Basicconcepts for convection parameterization in weather forecast and climate models: COST Action ES0905 final report. Atmosphere 6, 88–147.Zhang, G.J., 2002. Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res. 107,4220, http://dx.doi.org/10.1029/2001JD001005.Zhang, G.J., 2003. The concept of convective quasi-equilibrium in the tropical western Pacific: comparison with midlatitude continental environment. J.Geophys. Res. 108, 4592, http://dx.doi.org/10.1029/2003JD003520.Zhang, G.J., McFarlane, N.A., 1995. Sensitivity of climate simulations of the parameterization of cumulus convection in the Canadian Climate Centre generalcirculation model. Atmos. Ocean 33, 407–446.