Evaluation of the new UKCA climate-composition model – Part 2: The TroposphereO'Connor, F.M., Johnson, C.E., Morgenstern, O., Abraham, N.L., Braesicke, P., Dalvi, M., Folberth, G.A., Sanderson, M.G., Telford, P.J., Voulgarakis, A., Young, P.G., Zeng, G., Collins, B. ORCID: https://orcid.org/0000-0002-7419-0850 and Pyle, J.A. (2010) Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere. Geoscientific Model Development, 7. pp. 41-91. ISSN 1991-9603
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.5194/gmd-7-41-2014 Abstract/SummaryIn this paper, we present a description of the tropospheric chemistry component of the UK Chemistry and Aerosols (UKCA) model which has been coupled to the Met Office Hadley Centre's HadGEM family of climate models. We assess the model's transport and scavenging processes, in particular focussing on convective transport, boundary layer mixing, wet scavenging and inter-hemispheric exchange. Simulations with UKCA of the short-lived radon tracer suggest that modelled distributions are comparable to those of other models and the comparison with observations indicate that apart from a few locations, boundary layer mixing and convective transport are effective in the model as a means of vertically redistributing surface emissions of radon. Comparisons of modelled lead tracer concentrations with observations suggest that UKCA captures surface concentrations in both hemispheres very well, although there is a tendency to underestimate the observed geographical and interannual variability in the Northern Hemisphere. In particular, UKCA replicates the shape and absolute concentrations of observed lead profiles, a key test in the evaluation of a model's wet scavenging scheme. The timescale for inter-hemispheric transport, calculated in the model using a simple krypton tracer experiment, does appear to be long relative to other models and could indicate deficiencies in tropical deep convection and/or insufficient boundary layer mixing. We also describe the main components of the tropospheric chemistry and evaluate it against observations and other tropospheric chemistry models. In particular, from a climate forcing perspective, present-day observed surface methane concentrations and tropospheric ozone concentrations are reproduced very well by the model, thereby making it suitable for long centennial integrations as well as studies of biogeochemical feedbacks. Results from both historical and future simulations with UKCA tropospheric chemistry are presented. Future projections of tropospheric ozone vary with the Representative Concentration Pathway (RCP). In RCP2.6, for example, tropospheric ozone increases up to 2010 and then declines by 13% of its year-2000 global mean by the end of the century. In RCP8.5, tropospheric ozone continues to rise steadily throughout the 21st century, with methane being the main driving factor. Finally, we highlight aspects of the UKCA model which are undergoing and/or have undergone recent developments and are suitable for inclusion in a next-generation Earth System Model.
Allen, D., Rood, R., Thompson, A., and Hudson, R.: Threedimensional
radon 222 calculations using assimilated meteorological
data and a convective mixing algorithm, J. Geophys. Res.,
101, 6871–6881, 1996.
Andreae, M. and Merlet, P.: Emission of trace gases and aerosols
from biomass burning, Global Biogeochem. Cy., 15, 955–966,
2001.
Archibald, A. T., Jenkin, M., and Shallcross, D.: An isoprene mechanism
intercomparison, Atmos. Environ., 44, 5356–5364, 2010.
Archibald, A. T., Levine, J. G., Abraham, N. L., Cooke, M. C., Edwards,
P. M., Heard, D. E., Jenkin, M. E., Karunaharan, A., Pike,
R. C., Monks, P. S., Shallcross, D. E., Telford, P. J., Whalley,
L. K., and Pyle, J. A.: Impacts of HOx regeneration and recycling
in the oxidation of isoprene: consequences for the composition
of past, present and future atmospheres, Geophys. Res. Lett., 38,
L05804, doi:10.1029/2010GL046520, 2011.
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and
Palmer, P. I.: Why are estimates of global terrestrial isoprene
emissions so similar (and why is this not so for monoterpenes)?,
Atmos. Chem. Phys., 8, 4605–4620, doi:10.5194/acp-8-4605-
2008, 2008.
Ashmore, M.: Assessing the future global impacts of ozone on vegetation,
Plant Cell Environ., 28, 949–964, 2005.
Atkinson, R., Baulch, D., Cox, R., Hampson, R., Kerr, J., Rossi,
M., and Troe, J.: Evaluated kinetic and photochemical data for
atmospheric chemistry: Supplement VIII, halogen species – IUPAC
Subcommittee on Gas Kinetic Data Evaluation for Atmospheric
Chemistry, J. Phys. Chem. Ref. Data, 29, 167–266,
doi:10.1063/1.556058, 2000.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson,
R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.:
IUPAC Subcommittee for Gas Kinetic Data Evaluation, http://
www.iupac-kinetic.ch.cam.ac.uk/ (last access: November 2003),
Summary for 2003, 2003.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson,
R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe,
J.: IUPAC Subcommittee for Gas Kinetic Data Evaluation, http:
//www.iupac-kinetic.ch.cam.ac.uk/ (last access: October 2004),
Summary for 2004, 2004.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson,
R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and
Troe, J.: IUPAC Subcommittee for Gas Kinetic Data Evaluation,
http://www.iupac-kinetic.ch.cam.ac.uk/ (last access: March
2005), Summary for 2005, 2005.
Balkanski, Y., Jacob, D., Gardner, G., Graustein, W., and Turekian,
K.: Transport and residence times of tropospheric aerosols inferred
from a global 3-dimensional simulation of Pb-210, J. Geophys.
Res., 98, 20573–20586, doi:10.1029/93JD02456, 1993.
Barrie, L.: Background pollution in the arctic air-mass and its relevance
to North-American acid-rain studies, Water Air Soil Poll.,
30, 765–777, 1986.
Becker, K., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: Solubility
of nitrous acid (HONO) in sulfuric acid solutions, J. Phys.
Chem., 100, 14984–14990, 1996.
Beer, R., Glavich, T. A., and Rider, D. M.: Tropospheric emission
spectrometer for the Earth Observing System’s Aura satellite,
Appl. Optics, 40, 15, 2356–2367, doi:10.1364/AO.40.002356,
2001.
Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and
Boucher, O.: Aerosol forcing in the Climate Model Intercomparison
Project (CMIP5) simulations by HadGEM2-ES and the
role of ammonium nitrate, J. Geophys. Res., 116, D20206,
doi:10.1029/2011JD016074, 2011.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D.,
Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M.
G.: Global modeling of tropospheric chemistry with assimilated
meteorology: Model description and evaluation, J. Geophys.
Res., 106, 23073–23095, doi:10.1029/2001JD000807, 2001.
Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J.,
Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea,
G., Wenger, J. C., and Pilling, M. J.: Development of a detailed
chemical mechanism (MCMv3.1) for the atmospheric oxidation
of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641–664,
doi:10.5194/acp-5-641-2005, 2005.
Broecker, W., Li, Y., and Cromwell, J.: Radium-226 and Radon-
222: concentrations in Atlantic and Pacific Oceans, Science, 158,
1307–1310, 1967.
Butchart, N., Scaife, A., Austin, J., Hare, S., and Knight,
J.: Quasi-biennial oscillation in ozone in a coupled
chemistry-climate model, J. Geophys. Res., 108, 4486,
doi:10.1029/2002JD003004, D15, 2003.
Butler, T. M., Taraborrelli, D., Brühl, C., Fischer, H., Harder, H.,
Martinez, M., Williams, J., Lawrence, M. G., and Lelieveld, J.:
Improved simulation of isoprene oxidation chemistry with the
ECHAM5/MESSy chemistry-climate model: lessons from the
GABRIEL airborne field campaign, Atmos. Chem. Phys., 8,
4529–4546, doi:10.5194/acp-8-4529-2008, 2008.
Carver, G., Brown, P., and Wild, O.: The ASAD atmospheric chemistry
integration package and chemical reaction database, Comput.
Phys. Commun., 105, 197–215, 1997.
Chen, Y.-H. and Prinn, R.: Estimation of atmosphric methane
emissions between 1996 and 2001 using a three-dimensional
global chemical transport model, J. Geophys. Res., 111, D10307,
doi:10.1029/2005JD006058, 2006.
Chevillard, A., Ciais, P., Karstens, U., Heimann, M., Schmidt, M.,
Levin, I., Jacob, D., Podzun, R., Kazan, V., Sartorius, H., and
Weingartner, E.: Transport of 222Rn using the regional model
REMO: a detailed comparison with measurements over Europe,
Tellus B, 54, 850–871, 2002.
Cionni, I., Eyring, V., Lamarque, J. F., Randel, W. J., Stevenson,
D. S., Wu, F., Bodeker, G. E., Shepherd, T. G., Shindell,
D. T., and Waugh, D. W.: Ozone database in support of
CMIP5 simulations: results and corresponding radiative forcing,
Atmos. Chem. Phys., 11, 11267–11292, doi:10.5194/acp-
11-11267-2011, 2011.
Collins, W., Stevenson, D., Johnson, C., and Derwent, R.: Tropospheric
ozone in a global-scale three-dimensional Lagrangian
model and its response to NOx emission controls, J. Atmos.
Chem, 26, 223–274, 1997.
Collins, W., Derwent, R., Johnson, C., and Stevenson, D.: A comparison
of two schemes for the convective transport of chemical
species in a Lagrangian global chemistry model, Q. J. Roy. Meteor.
Soc., 128, 991–1009, 2002.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N.,
Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M.,
Liddicoat, S., Martin, G., O’Connor, F., Rae, J., Senior, C.,
Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development
and evaluation of an Earth-System model – HadGEM2,
Geosci. Model Dev., 4, 1051–1075, doi:10.5194/gmd-4-1051-
2011, 2011.
Conen, F. and Robertson, L.: Latitudinal distribution of radon-222
flux from continents, Tellus, 54, 127–133, doi:10.1034/j.1600-
0889.2002.00365.x, 2002.
Corbett, J. J. and Koehler, H. W.: Updated emissions
from ocean shipping, J. Geophys. Res., 108, 4650,
doi:10.1029/2003JD003751, D20, 2003.
CRC: CRC Handbook of Chemistry and Physics: A ReadyReference
Book of Chemical and Physical Data, CRC Press,
Boca Raton, FL, 84th Edn., 2003.
Davies, T., Cullen, M., Malcolm, A., Mawson, M., Staniforth, A.,
White, A., and Wood, N.: A new dynamical core for the Met
Office’s global and regional modelling of the atmosphere, Q. J.
Roy. Meteor. Soc., 131, 1759–1782, 2005.
Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.,
Dickinson, R., Hauglustaine, D., Heinze, C., Holland, E., Jacob,
D., Lohmann, U., Ramachandran, S., da Silva Dias, P., Wofsy,
S., and Zhang, X.: Climate Change 2007: The Scientific Basis.
Contribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change, Chap.
Couplings between changes in the climate system and biogeochemistry,
Cambridge Univ. Press, Cambridge, 499–587, 2007.
Denning, A., Holzer, M., Gurney, K., Heimann, M., Law, R.,
Rayner, P., Fung, I., Fan, S.-M., Taguchi, S., Friedlingstein,
P., Balkanski, Y., Taylor, J., Maiss, M., and Levin, I.: Threedimensional
transport and concentration of SF6. A model intercomparison
study (TransCom 2), Tellus B, 51, 266–297, 1999.
Dentener, F. and Crutzen, P.: Reaction of N2O5 on Tropospheric
Aerosols: Impact on the Global Distributions of NOx, O3, and
OH, J. Geophys. Res., 98, 149–7163, 1993.
Dentener, F., Feichter, J., and Jeuken, A.: Simulation of the tranpsort
of Rn222 using on-line and off-line global models at different
horizontal resolutions: a detailed comparison with measurements,
Tellus B, 51, 573–602, 1999.
Derwent, R. and Jenkin, M.: Hydrocarbons and the long-range
transport of ozone and PAN across Europe, Atmos. Environ., 25,
1661–1678, 1991.
Dibb, J., Talbot, R., Klemm, K., Gregory, G., Singh, H., Bradshaw,
J., and Sandholm, S.: Asian influence over the western North
Pacific during the fall season: inferences from lead 210, soluble
ionic species and ozone, J. Geophys. Res., 101, 1779–1792,
1996.
Dibb, J., Talbot, R., Lefer, B., Scheuer, E., Gregory, G., Browell,
E., Bradshaw, J., Sandholm, S., and Singh, H.: Distributions of
beryllium 7 and lead 210, and soluble aerosol-associated ionic
species over the western Pacific: PEM West B, February–March
1994, J. Geophys. Res., 102, 28287–28302, 1997.
Dlugokencky, E., Houweling, S., Bruhwiler, L., Masarie, K., Lang,
P., Miller, J., and Tans, P.: Atmospheric methane levels off: temporary
pause or a new steady-state?, Geophys. Res. Lett., 30,
1992, doi:10.1029/2003GL018126, 2003.
Dlugokencky, E., Bruhwiler, L., White, J., Emmons, L., Novelli,
P., Montzka, S., Masarie, K., Lang, P., Crotwell, A., Miller, J.,
and Gatti, L.: Observational constraints on recent increases in
the atmospheric CH4 burden, Geophys. Res. Lett., 36, L18803,
doi:10.1029/2009GL039780, 2009.
Emmerson, K. M. and Evans, M. J.: Comparison of tropospheric
gas-phase chemistry schemes for use within global models, Atmos.
Chem. Phys., 9, 1831–1845, doi:10.5194/acp-9-1831-2009,
2009.
Emmons, L., Hauglustaine, D., Muller, J., Carroll, M., Brasseur, G.,
Brunner, D., Staehelin, J., Thouret, V., and Marenco, A.: Data
composites of airborne observations of tropospheric ozone and
its precursors, J. Geophys. Res., 105, 20497–20538, 2000.
Endresen, Ø., Sørgård, E., Sundet, J., Dalsøren, S., Isaksen, I.,
Berglen, T., and Gravir, G.: Emission from international sea
transportation and environmental impact, J. Geophys. Res., 108,
4560, doi:10.1029/2002JD002898, 2003.
Endresen, Ø., Sørgård, E., Behrens, H., Brett, P., and Isaksen,
I.: A historical reconstruction of ships’ fuel consumption
and emissions, J. Geophys. Res., 112, D12301,
doi:10.1029/2006JD007630, 2007.
Evans, M. and Jacob, D.: Impact of new laboratory studies of
N2O5 hydrolysis on global model budgets of tropospheric nitrogen
oxides, ozone, and OH, Geophys. Res. Lett., 32, L09813,
doi:10.1029/2005GL022469, 2005.
Eyring, V., Kohler, H., van Aardenne, J., and Lauer, A.: Emissions
from international shipping: 1. The last 50 years, J. Geophys.
Res., 110, D17305, doi:10.1029/2004JD005619, 2005.
Eyring, V., Shepherd, T., and Waugh, D. E.: SPARC CCMVal:
SPARC Report on the Evaluation of Chemistry-Climate Models,
SPARC Report No. 5, WCRP-132, WMO/TD-No. 1526, http:
//www.sparc-climate.org/ (last access: January 2014), 2010a.
Eyring, V., Isaksen, I. S. A., Berntsen, T., Collins, W. J., Corbett,
J. J., Endresen, O., Grainger, R. G., Moldanova, J.,
Schlager, H., and Stevenson, D. S.: Transport impacts on atmosphere
and climate: shipping, Atmos. Environ., 44, 4735–4771,
doi:10.1016/j.atmosenv.2009.04.059, 2010b.
Fishman, J., Hoell, J., Bendura, R., McNeil, R., and Kirchhoff,
V.: NASA GTE TRACE A experiment (September October
1992): Overview, J. Geophys. Res., 101, 23865–23879,
doi:10.1029/96JD00123, 1996.
Folberth, G., Abraham, N., Dalvi, M., Johnson, C., Morgenstern, O.,
O’Connor, F. M., Pacifico, F., Young, P., Collins, W., and Pyle, J.:
Evaluation of the new UKCA climate-composition model – Part
4: Extension to Tropospheric Chemistry and Biogeochemical
Coupling between Atmosphere and Biosphere, Geosci. Model
Dev. Discuss., in preparation, 2014.
Fortuin, J. and Kelder, H.: An ozone climatology based on
ozonesonde and satellite measurements, J. Geophys. Res., 103,
31709–31734, 1998.
Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele,
L., and Fraser, P.: 3-Dimensional model synthesis of the global
methane cycle, J. Geophys. Res., 96, 13033–13065, 1991.
Ganzeveld, L. and Lelieveld, J.: Dry deposition parameterization
in a chemistry general-circulation model and its influence on
the distribution of reactive trace gases, J. Geophys. Res., 100,
20999–21012, doi:10.1029/95JD02266, 1995.
Gauss, M., Myhre, G., Isaksen, I. S. A., Grewe, V., Pitari, G.,
Wild, O., Collins, W. J., Dentener, F. J., Ellingsen, K., Gohar,
L. K., Hauglustaine, D. A., Iachetti, D., Lamarque, F.,
Mancini, E., Mickley, L. J., Prather, M. J., Pyle, J. A., Sanderson,
M. G., Shine, K. P., Stevenson, D. S., Sudo, K., Szopa, S.,
and Zeng, G.: Radiative forcing since preindustrial times due
to ozone change in the troposphere and the lower stratosphere,
Atmos. Chem. Phys., 6, 575–599, doi:10.5194/acp-6-575-2006,
2006.
Gent, P. R., Yeager, S. G., Neale, R. B., Levis, S., and Bailey, D. A.:
Improvements in a half degree atmosphere/land version of the
CCSM, Clim. Dynam., 34, 819–833, 2010.
Giannakopoulos, C.: Three dimensional modelling of the concentration
and deposition of tropospheric trace gases, Ph.D. thesis,
University of Cambridge, UK, 1998.
Giannakopoulos, C., Chipperfield, T., Law, K., and Pyle, J.: Validation
and intercomparison of wet and dry deposition schemes using
Pb-210 in a global three-dimensional off-line chemical transport
model, J. Geophys. Res., 104, 23761–23784, 1999.
GLOBALVIEW-CH4: Cooperative Atmospheric Data Integration
Project – Methane, CD-ROM, NOAA ESRL, Boulder, Colorado,
also available on Internet via anonymous FTP to ftp://ftp.cmdl.
noaa.gov, Path: ccg/ch4/GLOBALVIEW, 2009.
Gordon, C., Cooper, C., Senior, C., Banks, H., Gregory, J., Johns,
T., Mitchell, J., and Wood, R.: The simulation of SST, sea ice
extents and ocean heat transports in a version of the Hadley Centre
coupled model without flux adjustments, Clim. Dynam., 16,
147–168, 2000.
Gregory, D. and Rowntree, P.: A mass flux convection scheme with
representation of cloud ensemble characteristics and stabilitydependent
closure, Mon. Weather Rev., 118, 1483–1506, 1990.
Guelle, W., Balkanski, Y., Dibb, J., Schulz, M., and Dulac, F.: Wet
deposition in a global size-dependent aerosol transport model 2.
Influence of the scavenging scheme on (210)Pb vertical profiles,
surface concentrations, and deposition, J. Geophys. Res., 103,
28875–28891, 1998a.
Guelle, W., Balkanski, Y., Schulz, M., Dulac, F., and Monfray,
P.: Wet deposition in a global size-dependent aerosol transport
model – 1. Comparison of a 1 year Pb-210 simulation
with ground measurements, Clim. Dynam., 103, 11429–11445,
1998b.
Guenther, A., Hewitt, C., Erickson, D., Fall, R., Geron, C.,
Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W.,
Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor,
J., and Zimmerman, P.: A global-model of natural volatile
organic-compound emissions, J. Geophys. Res., 100, 8873–
8892, doi:10.1029/94JD02950, 1995.
Gupta, M., Douglass, A., Kawa, R., and Pawson, S.: Use of
radon for evaluation of atmospheric transport models: sensitivity
to emissions, Tellus B, 56, 404–412, doi:10.1111/j.1600-
0889.2004.00124.x, 2004.
Hanson, D., Burkholder, J., Howard, C., and Ravishankara, A.:
Measurement of oh and ho2 radical uptake coefficients on water
and sulfuric-acid surfaces, J. Phys. Chem., 96, 4979–4985,
1992.
Hardiman, S. C., Butchart, N., Osprey, S. M., Gray, L. J., Bushell,
A. C., and Hinton, T. J.: The Climatology of the Middle Atmosphere
in a Vertically Extended Version of the Met Office’s Climate
Model. Part I: Mean State, J. Atmos. Sci., 67, 1509–1525,
doi:10.1175/2009JAS3337.1, 2010.
Hartley, D. and Black, R.: Mechanistic analysis of interhemispheric
transport, Geophys. Res. Lett., 22, 2945–2948,
doi:10.1029/95GL02823, 1995.
Hauglustaine, D., Brasseur, G., Walters, S., Rasch, P., Muller, J.,
Emmons, L., and Carroll, C.: MOZART, a global chemical transport
model for ozone and related chemical tracers 2. Model results
and evaluation, J. Geophys. Res., 103, 28291–28335, 1998.
Hauglustaine, D., Hourdin, F., Jourdain, L., Filiberti, M., Walters,
S., Lamarque, J., and Holland, E.: Interactive chemistry
in the Laboratoire de Meteorologie Dynamique general
circulation model: Description and background tropospheric
chemistry evaluation, J. Geophys. Res., 109, D04314,
doi:10.1029/2003JD003957, 2004.
Hayman, G., O’Connor, F. M., Dalvi, M., Clark, D., Huntingford,
C., Gedney, N., Prigent, C., Buchwitz, M., Schneising,
O., and Burrows, J.: First comparison of the HadGEM2 climate
model with chemistry against Sciamachy atmospheric methane
columns, Atmos. Chem. Phys. Discuss., in preparation, 2014.
Hertel, O., Berkowicz, R., Christensen, J., and Hov, O.: Test of 2
numerical schemes for use in atmospheric transport-chemistry
models, Atmos. Environ., 27, 2591–2611, 1993.
Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R.
S. R., Keen, A. B., McLaren, A. J., and Hunke, E. C.: Design
and implementation of the infrastructure of HadGEM3: the nextgeneration
Met Office climate modelling system, Geosci. Model
Dev., 4, 223-253, doi:10.5194/gmd-4-223-2011, 2011.
Hoell, J., Davis, D., Liu, S., Newell, R., Shipham, M., Akimoto,
H., McNeal, R., Bendura, R., and Drewry, J.: Pacific exploratory
Mission-West A (PEM-West A): September October 1991, J.
Geophys. Res., 101, 1641–1653, doi:10.1029/95JD00622, 1996.
Hoerling, M., Schaack, T., and Lenzen, A.: A global analysis
of stratospheric-tropospheric exchange during northern winter,
Mon. Weather Rev., 121, 162–172, 1993.
Horowitz, L., Liang, J., Gardner, G., and Jacob, D.: Export of reactive
nitrogen from North America during summertime: Sensitivity
to hydrocarbon chemistry, J. Geophys. Res., 103, 13451–
13476, 1998.
Hough, A.: The calculation of photolysis rates for use in global tropospheric
modelling studies, Tech. Rep. 13259, At. Energy Res.
Estab., Harwell, UK, 1988.
Houweling, S., Dentener, F., and Lelieveld, J.: The impact of nonmethane
hydrocarbon compounds on tropospheric photochemistry,
J. Geophys. Res., 103, 10673–10696, 1998.
Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and
Heimann, M.: Inverse modeling of methane sources and sinks
using the adjoint of a global transport model, J. Geophys. Res.,
104, 26137–26160, 1999.
Hoyle, C. R., Marécal, V., Russo, M. R., Allen, G., Arteta, J.,
Chemel, C., Chipperfield, M. P., D’Amato, F., Dessens, O.,
Feng, W., Hamilton, J. F., Harris, N. R. P., Hosking, J. S.,
Lewis, A. C., Morgenstern, O., Peter, T., Pyle, J. A., Reddmann,
T., Richards, N. A. D., Telford, P. J., Tian, W., Viciani, S.,
Volz-Thomas, A., Wild, O., Yang, X., and Zeng, G.: Representation
of tropical deep convection in atmospheric models –
Part 2: Tracer transport, Atmos. Chem. Phys., 11, 8103–8131,
doi:10.5194/acp-11-8103-2011, 2011.
Jacob, D.: Heterogeneous chemistry and tropospheric ozone, Atmos.
Environ., 34, 2131–2159, 2000.
Jacob, D., Prather, M., Wofsy, S., and McElroy, M.: Atmospheric
distribution of Kr-85 simulated with a general-circulation model,
J. Geophys. Res., 92, 6614–6626, 1987.
Jacob, D., Prather, M., Rasch, P., Shia, R., Balkanski, Y., Beagley,
S., Bergmann, D., Blackshear, W., Brown, M., Chiba, M., Chipperfield,
M., deGrandpre, J., Dignon, J., Feichter, J., Genthon, C.,
Grose, W., Kasibhatla, P., Kohler, I., Kritz, M., Law, K., Penner,
J., Ramonet, M., Reeves, C., Rotman, D., Stockwell, D., VanVelthoven,
P., Verver, G., Wild, O., Yang, H., and Zimmermann,
P.: Evaluation and intercomparison of global atmospheric transport
models using Rn-222 and other short-lived tracers, J. Geophys.
Res., 102, 5953–5970, 1997.
Jenkin, M., Saunders, S., Derwent, R., and Pilling, M.: Construction
and application of a master chemical mechanism (MCM)
for modelling tropospheric chemistry., Abstr. Pap. Am. Chem.
S., 214, 116–COLL, 1997.
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.:
Protocol for the development of the Master Chemical Mechanism,
MCM v3 (Part B): tropospheric degradation of aromatic
volatile organic compounds, Atmos. Chem. Phys., 3, 181–193,
doi:10.5194/acp-3-181-2003, 2003.
Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J.,
Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M. G.,
Sander, R., Steil, B., Stiller, G., Tanarhte, M., Taraborrelli, D.,
van Aardenne, J., and Lelieveld, J.: The atmospheric chemistry
general circulation model ECHAM5/MESSy1: consistent
simulation of ozone from the surface to the mesosphere, Atmos.
Chem. Phys., 6, 5067–5104, doi:10.5194/acp-6-5067-2006,
2006.
Johns, T., Durman, C., Banks, H., Roberts, M., McLaren, A., Ridley,
J., Senior, C., Williams, K., Jones, A., Rickard, G., Cusack,
S., Ingram, W., Crucifix, M., Sexton, D., Joshi, M., Dong, B.,
Spencer, H., Hill, R., Gregory, J., Keen, A., Pardaens, A., Lowe,
J., Bodas-Salcedo, A., Stark, S., and Searl, Y.: The new Hadley
Centre Climate Model (HadGEM1): Evaluation of coupled simulations,
J. Climate, 19, 1327–1353, doi:10.1175/JCLI3712.1,
2006.
Johnson, C., Collins, W., Stevenson, D., and Derwent, R.: Relative
roles of climate and emissions changes on future tropospheric oxidant
concentrations, J. Geophys. Res., 104, 18631–18645, 1999.
Johnson, C., Stevenson, D., Collins, W., and Derwent, R.: Role
of climate feedback on methane and ozone studied with a coupled
ocean-atmosphere-chemistry model., Geophys. Res. Lett.,
28, 1723–1726, 2001.
Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C.,
Jones, G. S., Knight, J., Liddicoat, S., O’Connor, F. M., Andres,
R. J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule,
P., Corbin, K. D., Doutriaux-Boucher, M., Friedlingstein, P.,
Gornall, J., Gray, L., Halloran, P. R., Hurtt, G., Ingram, W. J.,
Lamarque, J.-F., Law, R. M., Meinshausen, M., Osprey, S.,
Palin, E. J., Parsons Chini, L., Raddatz, T., Sanderson, M. G.,
Sellar, A. A., Schurer, A., Valdes, P., Wood, N., Woodward, S.,
Yoshioka, M., and Zerroukat, M.: The HadGEM2-ES implementation
of CMIP5 centennial simulations, Geosci. Model Dev., 4,
543–570, doi:10.5194/gmd-4-543-2011, 2011.
Josse, B., Simon, P., and Peuch, V.: Radon global simulations with
the multiscale chemistry and transport model MOCAGE, Tellus
B, 56, 339–356, 2004.
Kawase, H., Nagashima, T., Sudo, K., and Nozawa, T.: Future
changes in tropospheric ozone under Representative Concentration
Pathways (RCPs), Geophys. Res. Lett., 38, L05801,
doi:10.1029/2010GL046402, 2011.
Kritz, M., Rosner, S., and Stockwell, D.: Validation of an offline
three-dimensional chemical transport model using observed
radon profiles – 1. Observations, J. Geophys. Res., 103, 8425–
8432, 1998.
Lacis, A., Wuebbles, D., and Logan, J.: Radiative forcing of climate
by changes in the vertical-distribution of ozone, J. Geophys. Res.,
95, 9971–9981, 1990.
Lamarque, J.-F., Kinnison, D. E., Hess, P. G., and Vitt, F. M.: Simulated
lower stratospheric trends between 1970 and 2005: Identifying
the role of climate and composition changes, J. Geophys.
Res., 113, D12301, doi:10.1029/2007JD009277, 2008.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A.,
Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B.,
Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne,
J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell,
J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical
(1850–2000) gridded anthropogenic and biomass burning
emissions of reactive gases and aerosols: methodology and application,
Atmos. Chem. Phys., 10, 7017–7039, doi:10.5194/acp-
10-7017-2010, 2010.
Lamarque, J.-F., Kyle, G. P., Meinshausen, M., Riahi, K., Smith,
S. J., van Vuuren, D. P., Conley, A. J., and Vitt, F.: Global
and regional evolution of short-lived radiatively-active gases and
aerosols in the Representative Concentration Pathways, Climatic
Change, 109, 191–212, 2011.
Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I.,
Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty,
R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J.,
Horowitz, L. W., Lee, Y. H., MacKenzie, I. A., Nagashima, T.,
Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M.,
Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S.,
Voulgarakis, A., and Zeng, G.: The Atmospheric Chemistry and
Climate Model Intercomparison Project (ACCMIP): overview
and description of models, simulations and climate diagnostics,
Geosci. Model Dev., 6, 179–206, doi:10.5194/gmd-6-179-2013,
2013.
Lamb, B., Gay, D., Westberg, H., and Pierce, T.: A biogenic hydrocarbon
emission inventory for the usa using a simple forest
canopy model, Atmos. Environ., 27, 1673–1690, 1993.
Law, K. and Pyle, J.: Modeling trace gas budgets in the troposphere
.1. ozone and odd nitrogen, J. Geophys. Res., 98, 18377–18400,
1993.
Law, K., Plantevin, P., Shallcross, D., Rogers, H., Pyle, J., Grouhel,
C., Thouret, V., and Marenco, A.: Evaluation of modeled O-
3 using Measurement of Ozone by Airbus In-Service Aircraft
(MOZAIC) data, J. Geophys. Res., 103, 25721–25737,
doi:10.1029/98JD01482, 1998.
Law, R. and Corbin, K.: Simulating the atmospheric transport of
CO2 and SF6 using the UK Met Office Unified Model, Tech.
Rep. 2, Centre for Australian Westher and Climate Research
(CAWCR), 2009.
Lawrence, M., Crutzen, P., Rasch, P., Eaton, B., and Mahowald,
N.: A model for studies of tropospheric photochemistry: description,
global distributions, and evaluation, J. Geophys. Res., 104,
26245–26277, doi:10.1029/1999JD900425, 1999.
Lawrence, M. G., Jöckel, P., and von Kuhlmann, R.: What does the
global mean OH concentration tell us?, Atmos. Chem. Phys., 1,
37–49, doi:10.5194/acp-1-37-2001, 2001.
Lelieveld, J. and Crutzen, P.: The role of clouds in tropospheric photochemistry,
J. Atmos. Chem., 12, 229–267, 1991.
Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer,
H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M.,
Taraborrelli, D., and Williams, J.: Atmospheric oxidation capacity
sustained by a tropical forest, Nature, 452, 737–740, 2008.
Levin, I. and Hesshaimer, V.: Refining of atmospheric transport
model entries by the globally observed passive tracer distributions
of (85)krypton and sulfur hexafluoride (SF6), J. Geophys.
Res., 101, 16745–16755, 1996.
Levy, H. I.: Normal atmosphere: Large radical and formaldehyde
concentrations predicted, Science, 173, 141–143, 1971.
Lin, X., Zaucker, F., Hsie, E., Trainer, M., and McKeen, S.: Radon
222 simulations as a test of a three-dimensional regional transport
model, J. Geophys. Res., 101, 29165–29177, 1996.
Lintner, B., Gilliland, A., and Fung, I.: Mechanisms of convectioninduced
modulation of passive tracer interhemispheric transport
interannual variability, J. Geophys. Res., 109, D13102,
doi:10.1029/2003JD004306, 2004.
Lock, A., Brown, A., Bush, M., Martin, G., and Smith, R.: A new
boundary layer mixing scheme. Part I: Scheme description and
single-column model tests, Mon. Weather Rev., 128, 3187–3199,
2000.
Logan, J., Megretskaia, I., Miller, A., Tiao, G., Choi, D., Zhang,
L., Stolarski, R., Labow, G., Hollandsworth, S., Bodeker, G.,
Claude, H., De Muer, D., Kerr, J., Tarasick, D., Oltmans, S.,
Johnson, B., Schmidlin, F., Staehelin, J., Viatte, P., and Uchino,
O.: Trends in the vertical distribution of ozone: A comparison of
two analyses of ozonesonde data, J. Geophys. Res., 104, 26373–
26399, doi:10.1029/1999JD900300, 1999.
Macintyre, H. L. and Evans, M. J.: Sensitivity of a global model
to the uptake of N2O5 by tropospheric aerosol, Atmos. Chem.
Phys., 10, 7409–7414, doi:10.5194/acp-10-7409-2010, 2010.
Macintyre, H. L. and Evans, M. J.: Parameterisation and impact
of aerosol uptake of HO2 on a global tropospheric model,
Atmos. Chem. Phys., 11, 10965–10974, doi:10.5194/acp-11-
10965-2011, 2011.
Madronich, S., McKenzie, R., Bjorn, L., and Caldwell, M.: Changes
in biologically active ultraviolet radiation reaching the Earth’s
surface, J. Photoch. Photobio. B, 46, 5–19, 1998.
Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A.,
Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and
Johnson, C. E.: Description and evaluation of GLOMAP-mode:
a modal global aerosol microphysics model for the UKCA
composition-climate model, Geosci. Model Dev., 3, 519–551,
doi:10.5194/gmd-3-519-2010, 2010.
Mann, G., Johnson, C., Bellouin, N., Dalvi, M., Abraham, L.,
Carslaw, K. S., Boucher, O., Stier, P., Rae, J., Spracklen, D. V.,
Telford, P., Pyle, J., O’Connor, F. M., Carver, G., Pringle, K. J.,
and Woodhouse, M. T.: Evaluation of the new UKCA climatecomposition
model – Part 3: Aerosols, Geosci. Model Develop.
Discuss., in preparation, 2014.
Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X.,
Brune, W. H., Clair, J. M. St., Crounse, J. D., Spencer, K. M.,
Beaver, M. R., Wennberg, P. O., Cubison, M. J., Jimenez, J. L.,
Fried, A., Weibring, P., Walega, J. G., Hall, S. R., Weinheimer,
A. J., Cohen, R. C., Chen, G., Crawford, J. H., McNaughton,
C., Clarke, A. D., Jaeglé, L., Fisher, J. A., Yantosca,
R. M., Le Sager, P., and Carouge, C.: Chemistry of hydrogen
oxide radicals (HOx) in the Arctic troposphere in spring,
Atmos. Chem. Phys., 10, 5823–5838, doi:10.5194/acp-10-5823-
2010, 2010.
Marenco, A., Jonquières, I., Gouget, H., and Nédélec, P.: Atmospheric
Ozone as a Climate Gas, chap. Experimental determinations
of meridional distribution and long term evolution of tropospheric
ozone – Consequences on radiative forcing, SpringerVerlag,
New York, USA, 305–319, 1995.
Martin, G., Ringer, M., Pope, V., Jones, A., Dearden, C., and Hinton,
T.: The physical properties of the atmosphere in the new
Hadley Centre Global Environmental Model (HadGEM1). Part I:
Model description and global climatology, J. Climate, 19, 1274–
1301, 2006.
Martin, G. M., Milton, S. F., Senior, C. A., Brooks, M. E., Ineson,
S., Reichler, T., and Kim, J.: Analysis and reduction of systematic
errors through a seamless approach to modeling weather and
climate, J. Climate, 23, 5933–5957, 2010.
Master Chemical Mechanism v2: No longer available online, last
access: February 2005, 2000.
Masui, T., Matsumoto, K., Hijioka, Y., Kinoshita, T., Nozawa,
T., Ishiwatari, S., Kato, E., Shukla, P. R., Yamagata, Y., and
Kainuma, M.: An emission pathway for stabilization at 6 Wm−2
radiative forcing, Climatic Change, 109, 59–76, 2011.
Mickley, L. J., Jacob, D. J., and D. Rind, D.: Uncertainty in preindustrial
abundance of tropospheric ozone: Implications for radiative
forcing calculations, J. Geophys. Res., 106, 3389–3399,
doi:10.1029/2000JD900594, 2001.
Morgenstern, O., Braesicke, P., Hurwitz, M. M., O’Connor, F. M.,
Bushell, A. C., Johnson, C. E., and Pyle, J. A.: The world avoided
by the Montreal Protocol, Geophys. Res. Lett., 35, L16811,
doi:10.1029/2008GL034590, 2008.
Morgenstern, O., Braesicke, P., O’Connor, F. M., Bushell, A. C.,
Johnson, C. E., Osprey, S. M., and Pyle, J. A.: Evaluation of
the new UKCA climate-composition model – Part 1: The strato
sphere, Geosci. Model Dev., 2, 43–57, doi:10.5194/gmd-2-43-
2009, 2009.
Müller, J. and Brasseur, G.: IMAGES – A 3-dimensional chemicaltransport
model of the global troposphere, J. Geophys. Res., 100,
16445–16490, 1995.
Murphy, D. M. and Fahey, D. W.: An estimate of the flux of stratospheric
reactive nitrogen and ozone into the troposphere, J. Geophys.
Res., 99, 5325–5332, 1994.
Nassar, R., Logan, J. A., Worden, H. M., Megretskaia, I. A.,
Bowman, K. W., Osterman, G. B., Thompson, A. M., Tarasick,
D. W., Austin, S., Claude, H., Dubey, M. K., Hocking,
W. K., Johnson, B. J., Joseph, E., Merrill, J., Morris, G. A.,
Newchurch, M., Oltmans, S. J., Posny, F., Schmidlin, F. J.,
Vomel, H., Whiteman, D. N., and Witte, J. C.: Validation of Tropospheric
Emission Spectrometer (TES) nadir ozone profiles using
ozonesonde measurements, J. Geophys. Res., 113, D15S17,
doi:10.1029/2007JD008819, 2008.
Neu, J. L., Prather, M. J., and Penner, J. E.: Global atmospheric
chemistry: integrating over fractional cloud cover, J. Geophys.
Res., 112, D11306, doi:10.1029/2006JD008007, 2007.
O’Connor, F. M., Johnson, C. E., Morgenstern, O., and Collins,
W. J.: Interactions between tropospheric chemistry and climate
model temperature and humidity biases, Geophys. Res. Lett., 36,
L16801, doi:10.1029/2009GL039152, 2009.
O’Connor, F. M., Boucher, O., Gedney, N., Jones, C. D., Folberth,
G. A., Coppell, R., Friedlingstein, P., Collins, W. J., Chappellaz,
J., Ridley, J., and Johnson, C. E.: Possible role of wetlands,
permafrost, and methane hydrates in the methane cycle under
future climate change: a review, Rev. Geophys., 48, RG4005,
doi:10.1029/2010RG000326, 2010.
Olsen, S. C., McLinden, C. A., and Prather, M. J.: The stratospheric
N2O-NOy system: Testing uncertainties in a 3-D framework, J.
Geophys. Res., 106, 28771–28784, 2001.
O’Sullivan, D., Lee, M., Noone, B., and Heikes, B.: Henry’s
law constant determinations for hydrogen peroxide, methyl hydroperoxide,
hydroxymethyl hydroperoxide, ethyl hydroperoxide,
and peroxyacetic acid, J. Phys. Chem., 100, 3241–3247,
1996.
Park, M., Randel, W., Kinnison, D., Garcia, R., and Choi, W.: Seasonal
variation of methane, water vapor, and nitrogen oxides near
the tropopause: satellite observations and model simulations, J.
Geophys. Res., 109, D03302, doi:10.1029/2003JD003706, 2004.
Penner, J., Atherton, C., Dignon, J., Ghan, S., Walton, J., and
Hameed, S.: Tropospheric nitrogen – a 3-dimensional study of
sources, distributions, and deposition, J. Geophys. Res., 96, 959–
990, doi:10.1029/90JD02228, 1991.
Pfister, G. G., Emmons, L. K., Hess, P. G., Lamarque, J. F., Orlando,
J. J., Walters, S., Guenther, A., Palmer, P. I., and Lawrence, P. J.:
Contribution of isoprene to chemical budgets: a model tracer
study with the NCAR CTM MOZART-4, J. Geophys. Res., 113,
D05308, doi:10.1029/2007JD008948, 2008.
Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P.: Development
and intercomparison of condensed isoprene oxidation
mechanisms for global atmospheric modeling, J. Atmos. Chem.,
37, 29–52, doi:10.1023/A:1006391009798, 2000.
Prather, M., McElroy, M., Wofsy, S., Russell, G., and Rind, D.:
Chemistry of the global troposphere – fluorocarbons as tracers
of air motion, J. Geophys. Res., 92, 6579–6613, 1987.
Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky,
E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson,
P., Midgley, P., and Wang, M.: Climate Change 2001: The Scientific
Basis. Contribution of Working Group I to the Third
Assessment Report of the Intergovernmental Panel on Climate
Change, Chap. Atmospheric Chemistry and Greenhouse Gases,
Cambridge Univ. Press, Cambridge, 239–287, 2001.
Preiss, N. and Genthon, C.: Use of a new database of lead 210 for
global aerosol model validation, J. Geophys. Res., 102, 25347–
25357, 1997.
Preiss, N., Melieres, M., and Pourchet, M.: A compilation of data on
lead 210 concentration in surface air and fluxes at the air-surface
and water-sediment interfaces, J. Geophys. Res., 101, 28847–
28862, 1996.
Price, C. and Rind, D.: A simple lightning parameterization for
calculating global lightning distributions, J. Geophys. Res., 97,
9919–9933, 1992.
Price, C. and Rind, D.: What determines the cloud-to-ground lightning
fraction in thunderstorms, Geophys. Res. Lett., 20, 463–
466, 1993.
Price, C. and Rind, D.: Modeling global lightning distributions in a
general-circulation model, Mon. Weather Rev., 122, 1930–1939,
1994.
Price, C., Penner, J., and Prather, M.: NOx from lightning. 2. Constraints
from the global atmospheric electric circuit, J. Geophys.
Res., 102, 5943–5951, doi:10.1029/96JD02551, 1997.
Priestley, A.: A quasi-conservative version of the semi-Lagrangian
advection scheme, Mon. Weather Rev., 121, 621–629,
doi:10.1175/1520-0493(1993)121<0621:AQCVOT>2.0.CO;2,
1993.
Raper, J., Kleb, M., Jacob, D., Davis, D., Newell, R., Fuelberg, H.,
Bendura, R., Hoell, J., and McNeal, R.: Pacific Exploratory Mission
in the tropical Pacific: PEM-Tropics B, March-April 1999, J.
Geophys. Res., 106, 32401–32425, doi:10.1029/2000JD900833,
2001.
Rasch, P., Feichter, J., Law, K., Mahowald, N., Penner, J.,
Benkovitz, C., Genthon, C., Giannakopoulos, C., Kasibhatla, P.,
Koch, D., Levy, H., Maki, T., Prather, M., Roberts, D., Roelofs,
G., Stevenson, D., Stockwell, Z., Taguchi, S., Kritz, M., Chipper-
field, M., Baldocchi, D., McMurry, P., Barrie, L., Balkansi, Y.,
Chatfield, R., Kjellstrom, E., Lawrence, M., Lee, H., Lelieveld,
J., Noone, K., Seinfeld, J., Stenchikov, G., Schwartz, S., Walcek,
C., and Williamson, D.: A comparison of scavenging and
deposition processes in global models: results from the WCRP
Cambridge Workshop of 1995, Tellus B, 52, 1025–1056, 2000.
Ravishankara, A., Dunlea, E., Blitz, M., Dillon, T., Heard, D.,
Pilling, M., Strekowski, R., Nicovich, J., and Wine, P.: Redetermination
of the rate coefficient for the reaction of O(1D) with
N2, Geophys. Res. Lett., 29, 1745, doi:10.1029/2002GL014850,
2002.
Regimbal, J. and Mozurkewich, M.: Peroxynitric acid decay mechanisms
and kinetics at low pH, J. Phys. Chem. A, 101, 8822–8829,
1997.
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann,
G., Nakicenovic, N., and Rafaj, P.: RCP 8.5-A scenario
of comparatively high greenhouse gas emissions, Climatic
Change, 109, 33–57, 2011.
Richards, N. A. D., Osterman, G.B., Browell, E.V., Hair, J. W., Avery,
M., and Li, Q.: Validation of Tropospheric Emission Spec
trometer ozone profiles with aircraft observations during the
intercontinental chemical transport experiment-B, J. Geophys.
Res., 113, D16S29, doi:10.1029/2007JD008815, 2008.
Rind, D. and Lerner, J.: Use of on-line tracers as a diagnostic tool
in general circulation model development. 1. Horizontal and vertical
transport in the troposphere, J. Geophys. Res., 101, 12667–
12683, doi:10.1029/96JD00551, 1996.
Robertson, L., Stevenson, D., and Conen, F.: Test of a northwardsdecreasing
Rn-222 source term by comparison of modelled and
observed atmospheric Rn-222 concentrations, Tellus B, 57, 116–
123, 2005.
Roelofs, G. and Lelieveld, J.: Tropospheric ozone simulation with
a chemistry-general circulation model: Influence of higher hydrocarbon
chemistry, J. Geophys. Res., 105, 22697–22712,
doi:10.1029/2000JD900316, 2000.
Russo, M. R., Marécal, V., Hoyle, C. R., Arteta, J., Chemel, C.,
Chipperfield, M. P., Dessens, O., Feng, W., Hosking, J. S.,
Telford, P. J., Wild, O., Yang, X., and Pyle, J. A.: Representation
of tropical deep convection in atmospheric models – Part
1: Meteorology and comparison with satellite observations, Atmos.
Chem. Phys., 11, 2765–2786, doi:10.5194/acp-11-2765-
2011, 2011.
Sander, R. and Crutzen, P.: Model study indicating halogen activation
and ozone destruction in polluted air masses transported
to the sea, J. Geophys. Res., 101(D4), 9121–9138,
doi:10.1029/95JD03793, 1996.
Sanderson, M., Jones, C., Collins, W., Johnson, C., and Derwent,
R.: Effect of climate change on isoprene emissions
and surface ozone levels, Geophys. Res. Lett., 30,
doi:10.1029/2003GL017642, 2003.
Sanderson, M., Collins, W., Johnson, C., and Derwent, R.: Present
and future acid deposition to ecosystems: the effect of climate
change, Atmos. Environ., 40, 1275–1283, 2006.
Sanderson, M. G., Collins, W. J., Hemming, D. L., and Betts, R. A.:
Stomatal conductance changes due to increasing carbon dioxide
levels: projected impact on surface ozone levels, Tellus B, 59,
404–411, 2007.
Saunders, S., Jenkin, M., Derwent, R., and Pilling, M.: World Wide
Web site of a Master Chemical Mechanism (MCM) for use
in tropospheric chemistry models, Atmos. Environ., 31, 1249,
doi:10.1016/S1352-2310(97)85197-7, 1997.
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M.
J.: Protocol for the development of the Master Chemical Mechanism,
MCM v3 (Part A): tropospheric degradation of nonaromatic
volatile organic compounds, Atmos. Chem. Phys., 3,
161–180, doi:10.5194/acp-3-161-2003, 2003.
Savage, N. H., Law, K. S., Pyle, J. A., Richter, A., Nüß, H.,
and Burrows, J. P.: Using GOME NO2 satellite data to examine
regional differences in TOMCAT model performance, Atmos.
Chem. Phys., 4, 1895–1912, doi:10.5194/acp-4-1895-2004,
2004.
Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R.,
Johnson, C. E., O’Connor, F. M., and Dalvi, M.: Air quality
modelling using the Met Office Unified Model: model description
and initial evaluation, Geosci. Model Dev., 6, 353–372,
doi:10.5194/gmd-6-353-2013, 2013.
Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics:
From Air Pollution to Climate Change, John Wiley & Sons,
Hoboken, New Jersey, USA, 2nd Edn., 2006.
Shindell, D. T., Faluvegi, G., and Bell, N.: Preindustrial-to-presentday
radiative forcing by tropospheric ozone from improved simulations
with the GISS chemistry-climate GCM, Atmos. Chem.
Phys., 3, 1675–1702, doi:10.5194/acp-3-1675-2003, 2003.
Shindell, D. T., Faluvegi, G., Stevenson, D. S., Krol, M. C.,
Emmons, L. K., Lamarque, J.-F., Petron, G., Dentener, F. J.,
Ellingsen, K., Schultz, M. G., Wild, O., Amann, M., Atherton,
C. S., Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W.
J., Derwent, R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore,
A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L. W., Isaksen,
I. S. A., Lawrence, M. G., Montanaro, V., Muller, J. F., Pitari, G.,
Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson,
M. G., Savage, N. H., Strahan, S. E., Sudo, K., Szopa, S.,
Unger, N., van Noije, T. P. C., and Zeng, G.: Multimodel simulations
of carbon monoxide: Comparison with observations and
projected near-future changes, J. Geophys. Res., 111, D19306,
doi:10.1029/2006JD007100, 2006.
Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A.,
Unger, N., and Bauer, S. E.: Improved attribution of
climate forcing to emissions, Science, 326, 716–718,
doi:10.1126/science.1174760, 2009.
Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G.,
Nazarenko, L., Lamarque, J.-F., Bowman, K., Milly, G., Kovari,
B., Ruedy, R., and Schmidt, G.: Interactive ozone and methane
chemistry in GISS-E2 historical and future climate simulations,
Atmos. Chem. Phys., 13, 2653–2689, doi:10.5194/acp-13-2653-
2013, 2013.
Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.:
Indirect radiative forcing of climate change through ozone
effects on the land-carbon sink, Nature, 448, 791–794,
doi:10.1038/nature06059, 2007.
Smith, R., Fowler, D., Sutton, M., Flechard, C., and Coyle, M.:
Regional estimation of pollutant gas dry deposition in the UK:
model description, sensitivity analyses and outputs, Atmos. Environ.,
34, 3757–3777, 2000.
Sorteberg, A. and Hov, O.: Two parametrizations of the dry deposition
exchange for SO2 and NH3 in a numerical model, Atmos.
Environ., 30, 1823–1840, 1996.
Staudinger, J. and Roberts, P.: A critical compilation of Henry’s
law constant temperature dependence relations for organic compounds
in dilute aqueous solutions, Chemosphere, 44, 561–576,
2001.
Stevenson, D., Collins, W., Johnson, C., and Derwent, R.: Intercomparison
and evaluation of atmospheric transport in a Lagrangian
model (STOCHEM), and an Eulerian model (UM), using Rn-222
as a short-lived tracer, Q. J. Roy. Meteor. Soc., 124, 2477–2491,
1998.
Stevenson, D., Dentener, F., Schultz, M., Ellingsen, K., van Noije,
T., Wild, O., Zeng, G., Amann, M., Atherton, C., Bell, N.,
Bergmann, D., Bey, I., Butler, T., Cofala, J., Collins, W., Derwent,
R., Doherty, R., Drevet, J., Eskes, H., Fiore, A., Gauss,
M., Hauglustaine, D., Horowitz, L., Isaksen, I., Krol, M., Lamarque,
J., Lawrence, M., Montanaro, V., Muller, J., Pitari, G.,
Prather, M., Pyle, J., Rast, S., Rodriguez, J., Sanderson, M.,
Savage, N., Shindell, D., Strahan, S., Sudo, K., and Szopa,
S.: Multimodel ensemble simulations of present-day and nearfuture
tropospheric ozone, J. Geophys. Res., 111, D08301,
doi:10.1029/2005JD006338, 2006.
Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell,
D. T., Voulgarakis, A., Skeie, R. B., Dalsoren, S. B., Myhre, G.,
Berntsen, T. K., Folberth, G. A., Rumbold, S. T., Collins, W.
J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije, T.
P. C., Strunk, A., Bergmann, D., Cameron-Smith, P., Plummer,
D. A., Strode, S. A., Horowitz, L., Lee, Y. H., Szopa, S., Sudo,
K., Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V.,
Conley, A., Bowman, K. W., and Wild, O.: Tropospheric ozone
changes, radiative forcing and attribution to emissions in the
Atmospheric Chemistry and Climate Model Inter-comparison
Project (ACCMIP), Atmos. Chem. Phys., 13, 6, 3063–3085,
doi:10.5194/acp-13-3063-2013, 2013.
Stockwell, D., Kritz, M., Chipperfield, M., and Pyle, J.: Validation
of an off-line three-dimensional chemical transport model using
observed radon profiles – 2. Model results, J. Geophys. Res., 103,
8433–8445, 1998.
Sudo, K., Takahashi, M., and Akimoto, H.: CHASER: a
global chemical model of the troposphere – 2. Model results
and evaluation, J. Geophys. Res., 107(D21), 4586,
doi:10.1029/2001JD001114, 2002.
Telford, P. J., Braesicke, P., Morgenstern, O., and Pyle, J. A.: Technical
Note: Description and assessment of a nudged version of
the new dynamics Unified Model, Atmos. Chem. Phys., 8, 1701–
1712, doi:10.5194/acp-8-1701-2008, 2008.
Telford, P. J., Lathière, J., Abraham, N. L., Archibald, A. T.,
Braesicke, P., Johnson, C. E., Morgenstern, O., O’Connor, F. M.,
Pike, R. C., Wild, O., Young, P. J., Beerling, D. J., Hewitt, C.
N., and Pyle, J.: Effects of climate-induced changes in isoprene
emissions after the eruption of Mount Pinatubo, Atmos. Chem.
Phys., 10, 7117–7125, doi:10.5194/acp-10-7117-2010, 2010.
Telford, P. J., Abraham, N. L., Archibald, A. T., Braesicke, P.,
Dalvi, M., Morgenstern, O., O’Connor, F. M., Richards, N. A.
D., and Pyle, J. A.: Implementation of the Fast-JX Photolysis
scheme (v6.4) into the UKCA component of the MetUM
chemistry-climate model (v7.3), Geosci. Model Dev., 6, 161–
177, doi:10.5194/gmd-6-161-2013, 2013.
Telford, P. J., Archibald, A. T., Abraham, N., Braesicke, P., Dalvi,
M., Johnson, C., Keeble, J., O’Connor, F., Squire, O., and Pyle,
J.: Evaluation of the UM-UKCA model configuration for Chemistry
of the Stratosphere and Troposphere (CheST), Geosci.
Model Dev. Discuss., in preparation, 2014.
The HadGEM2 Development Team: Martin, G. M., Bellouin, N.,
Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S.
C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J.,
O’Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward,
S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden,
C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M.,
Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt,
H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram,
W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A.,
Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P.,
Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley,
J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A.,
Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Of-
fice Unified Model climate configurations, Geosci. Model Dev.,
4, 723–757, doi:10.5194/gmd-4-723-2011, 2011.
Thompson, A., Singh, H., and Schlager, H.: Introduction to special
section: Subsonic Assessment Ozone and Nitrogen Oxide Experiment
(SONEX) and Pollution from Aircraft Emissions in the
North Atlantic Flight Corridor (POLINAT 2), J. Geophys. Res.,
105, 3595–3603, doi:10.1029/2000JD900012, 2000.
Thompson, A., Witte, J., McPeters, R., Oltmans, S., Schmidlin,
F., Logan, J., Fujiwara, M., Kirchhoff, V., Posny, F., Coetzee,
G., Hoegger, B., Kawakami, S., Ogawa, T., Johnson, B., Vomel,
H., and Labow, G.: Southern Hemisphere Additional Ozonesondes
(SHADOZ) 1998–2000 tropical ozone climatology – 1.
Comparison with Total Ozone Mapping Spectrometer (TOMS)
and ground-based measurements, J. Geophys. Res., 108, 8238,
doi:10.1029/2001JD000967, D2, 2003a.
Thompson, A., Witte, J., Oltmans, S., Schmidlin, F., Logan, J.,
Fujiwara, M., Kirchhoff, V., Posny, F., Coetzee, G., Hoegger,
B., Kawakami, S., Ogawa, T., Fortuin, J., and Kelder,
H.: Southern Hemisphere Additional Ozonesondes (SHADOZ)
1998–2000 tropical ozone climatology – 2. Tropospheric variability
and the zonal wave-one, J. Geophys. Res., 108, 8241,
doi:10.1029/2002JD002241, D2, 2003b.
Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A.,
Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A.,
Clarke, L. E., and Edmonds, J. A.: RCP4.5: a pathway for stabilization
of radiative forcing by 2100, Climatic Change, 109,
77–94, 2011.
Turekian, K., Nozaki, Y., and Benninger, L.: Geochemistry of atmospheric
radon and radon products, Annu. Rev. Earth Pl. Sc.,
5, 227–255, 1977.
Tyndall, G., Cox, R., Granier, C., Lesclaux, R., Moortgat, G.,
Pilling, M., Ravishankara, A., and Wallington, T.: Atmospheric
chemistry of small organic peroxy radicals, J. Geophys. Res.,
106, 12157–12182, doi:10.1029/2000JD900746, 2001.
Uppala, S. M., Kallberg, P. W., Simmons, A. J., Andrae, U., Bechtold,
V. D., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez,
A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan,
R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars,
A. C. M., Van De Berg, L., Bidlot, J., Bormann, N., Caires, S.,
Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes,
M., Hagemann, S., Holm, E., Hoskins, B. J., Isaksen, L., Janssen,
P. A. E. M., Jenne, R., McNally, A. P., Mahfouf, J. F., Morcrette,
J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth,
K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen,
J.: The ERA-40 reanalysis, Q. J. Roy. Meteorol. Soc., 131, 2961–
3012, 2005.
van Aardenne, J., Dentener, F., Olivier, J., and Peters, J.:
The EDGAR 3.2 Fast Track 2000 dataset (32FT2000),
available at: http://themasites.pbl.nl/tridion/en/themasites/edgar/
emission_data/edgar_32ft2000/index-2.html (last access: January
2014), 2005.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J.,
Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability
in global biomass burning emissions from 1997 to 2004, Atmos.
Chem. Phys., 6, 3423–3441, doi:10.5194/acp-6-3423-2006,
2006.
van Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van
Vliet, J., Deetman, S., Isaac, M., Goldewijk, K. K., Hof, A., Beltran,
A. M., Oostenrijk, R., and van Ruijven, B.: RCP2.6: exploring
the possibility to keep global mean temperature increase
below 2 degrees C, Climatic Change, 109, 95–116, 2011.
Vestreng, V., Rigler, E., Adams, M., Kindbom, K., Pacyna, J. M.,
van der Gon, H. D., Reis, S., Travnikovet, O.: EMEP: Inventory
Review 2006: Emission data reported to the LRTAP Convention
and NEC Directive, Stage 1, 2 and 3 review, Evaluation of inventories
of HMs and POPs, EMEP MSC-W, Oslo, Norway, 2006.
von Kuhlmann, R., Lawrence, M., Crutzen, P., and Rasch, P.: A
model for studies of tropospheric ozone and nonmethane hydrocarbons:
Model description and ozone results, J. Geophys. Res.,
108, 4729, doi:10.1029/2002JD003348, D23, 2003.
von Kuhlmann, R., Lawrence, M. G., Pöschl, U., and Crutzen, P. J.:
Sensitivities in global scale modeling of isoprene, Atmos. Chem.
Phys., 4, 1–17, doi:10.5194/acp-4-1-2004, 2004.
Voulgarakis, A., Wild, O., Savage, N. H., Carver, G. D., and Pyle, J.
A.: Clouds, photolysis and regional tropospheric ozone budgets,
Atmos. Chem. Phys., 9, 8235–8246, doi:10.5194/acp-9-8235-
2009, 2009.
Voulgarakis, A., Savage, N. H., Wild, O., Braesicke, P., Young, P. J.,
Carver, G. D., and Pyle, J. A.: Interannual variability of tropospheric
composition: the influence of changes in emissions,
meteorology and clouds, Atmos. Chem. Phys., 10, 2491–2506,
doi:10.5194/acp-10-2491-2010, 2010.
Voulgarakis, A., Telford, P. J., Aghedo, A. M., Braesicke, P., Faluvegi,
G., Abraham, N. L., Bowman, K. W., Pyle, J. A., and Shindell,
D. T.: Global multi-year O3-CO correlation patterns from
models and TES satellite observations, Atmos. Chem. Phys., 11,
5819–5838, doi:10.5194/acp-11-5819-2011, 2011.
Voulgarakis, A., Naik, V., Lamarque, J.-F., Shindell, D. T., Young, P.
J., Prather, M. J., Wild, O., Field, R. D., Bergmann, D., CameronSmith,
P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty,
R. M., Eyring, V., Faluvegi, G., Folberth, G. A., Horowitz, L.
W., Josse, B., McKenzie, I. A., Nagashima, T., Plummer, D. A.,
Righi, M., Rumbold, S. T., Stevenson, D. S., Strode, S. A., Sudo,
K., Szopa, S., and Zeng, G.: Analysis of present day and future
OH and methane lifetime in the ACCMIP simulations, Atmos.
Chem. Phys., 13, 9, 4907–4916, doi:10.5194/acp-13-4907-2013,
2013.
Walton, J., MacCracken, M., and Ghan, S.: A global-scale lagrangian
trace species model of transport, transformation,
and removal processes, J. Geophys. Res., 93, 8339–8354,
doi:10.1029/JD093iD07p08339, 1988.
Wang, C., Corbett, J., and Firestone, J.: Improving spatial representation
of global ship emissions inventories, Environ. Sci. Tech.,
42, 193–199, doi:10.1021/es0700799, 2008.
Wang, J., Logan, J., McElroy, M., Duncan, B., Megretskaia, I., and
Yantosca, R.: A 3-D model analysis of the slowdown and interannual
variability in the methane growth rate from 1988 to 1997,
Global Biogeochem. Cy., 18, doi:10.1029/2003GB002180,
2004.
Wang, K.-Y. and Shallcross, D. E.: A modelling study of tropospheric
distributions of the trace gases CFCl3 and CH3CCl3 in
the 1980s, Ann. Geophys., 18, 972–986, doi:10.1007/s00585-
000-0972-3, 2000.
Wang, Y., Jacob, D., and Logan, J.: Global simulation of tropospheric
O-3-NOx-hydrocarbon chemistry 3. Origin of tropospheric
ozone and effects of nonmethane hydrocarbons, J. Geophys.
Res., 103, 10757–10767, doi:10.1029/98JD00156, 1998.
Waugh, D. W., Oman, L., Kawa, S. R., Stolarski, R. S., Pawson, S.,
Douglass, A. R., Newman, P. A., and Nielsen, J. E.: Impacts of
climate change on stratospheric ozone recovery, Geophys. Res.
Lett., 36, L03805, doi:10.1029/2008GL036223, 2009.
Weiss, W., Sittkus, A., Stockburger, H., Sartorius, H., and
Munnich, K.: Large-scale atmospheric mixing derived from
meridional profiles of KR-85, J. Geophys. Res., 88, 8574–8578,
doi:10.1029/JC088iC13p08574, 1983.
Wesely, M.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical-models, Atmos. Environ.,
23, 1293–1304, 1989.
WHO: Health Aspects of Air Pollution with Particulate Matter,
Ozone, and Nitrogen Dioxide, Report of a WHO Working Group
EUR/03/5042688, World Health Organization European Centre
for Environment and Health, Bonn, Germany, 2003.
Wild, O.: Modelling the global tropospheric ozone budget: exploring
the variability in current models, Atmos. Chem. Phys., 7,
2643–2660, doi:10.5194/acp-7-2643-2007, 2007.
Wild, O. and Prather, M.: Excitation of the primary tropospheric
chemical mode in a global three-dimensional model, J. Geophys.
Res., 105, 24647–24660, doi:10.1029/2000JD900399, 2000.
Wild, O., Zhu, X., and Prather, M.: Fast-j: Accurate simulation of
in- and below-cloud photolysis in tropospheric chemical models,
J. Atmos. Chem., 37, 245–282, 2000.
WMO: Scientific Assessment of Ozone Depletion: 2010, World
Meteorological Organization, Geneva, Switzerland, global
Ozone Research and Monitoring Project – Report No. 52,
516 pp., 2011.
Yang, X., Cox, R., Warwick, N., Pyle, J., Carver, G., O’Connor,
F. M., and Savage, N.: Tropospheric bromine chemistry and its
impacts on ozone: a model study, J. Geophys. Res., 110, D23311,
doi:10.1029/2005JD006244, 2005.
Yienger, J. and Levy, H.: Empirical-model of global soilbiogenic
NOx emissions, J. Geophys. Res., 100, 11447–11464,
doi:10.1029/95JD00370, 1995.
Young, P. J., Arneth, A., Schurgers, G., Zeng, G., and Pyle, J. A.:
The CO2 inhibition of terrestrial isoprene emission significantly
affects future ozone projections, Atmos. Chem. Phys., 9, 2793–
2803, doi:10.5194/acp-9-2793-2009, 2009.
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F.,
Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O.,
Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren,
S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz,
L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T.,
Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell,
D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Preindustrial
to end 21st century projections of tropospheric ozone
from the Atmospheric Chemistry and Climate Model Intercomparison
Project (ACCMIP), Atmos. Chem. Phys., 13, 2063–
2090, doi:10.5194/acp-13-2063-2013, 2013.
Zaucker, F., Daum, P., Wetterauer, U., Berkowitz, C., Kromer, B.,
and Broecker, W.: Atmospheric Rn-222 measurements during
the 1993 NARE intensive, J. Geophys. Res., 101, 29149–29164,
doi:10.1029/96JD02029, 1996.
Zeng, G. and Pyle, J.: Changes in tropospheric ozone between 2000
and 2100 modeled in a chemistry-climate model, Geophys. Res.
Lett., 30, 1392, doi:10.1029/2002GL016708, 2003.
Zeng, G. and Pyle, J.: Influence of El Nino Southern Oscillation
on stratosphere/troposphere exchange and the global tropospheric
ozone budget, Geophys. Res. Lett., 32, L01814,
doi:10.1029/2004GL021353, 2005.
Zeng, G., Pyle, J. A., and Young, P. J.: Impact of climate change on
tropospheric ozone and its global budgets, Atmos. Chem. Phys.,
8, 369–387, doi:10.5194/acp-8-369-2008, 2008. University Staff: Request a correction | Centaur Editors: Update this record |